dc.contributor.author |
Kokkorakis, GC |
en |
dc.contributor.author |
Roumeliotis, JA |
en |
dc.date.accessioned |
2014-03-01T01:17:48Z |
|
dc.date.available |
2014-03-01T01:17:48Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0920-5071 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14671 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0036219321&partnerID=40&md5=5cdbac12b338ee0191eb3bb4c199f309 |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Physics, Applied |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.subject.other |
Bessel functions |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Electric field effects |
en |
dc.subject.other |
Perturbation techniques |
en |
dc.subject.other |
Electromagnetic eigenfrequencies |
en |
dc.subject.other |
Electromagnetic field effects |
en |
dc.title |
Electromagnetic eigenfrequencies in concentric spheroidal-spherical cavities |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
The electromagnetic eigenfrequencies f(nsm) in perfectly conducting concentric spheroidal-spherical cavities are determined analytically. Two types of cavities are examined, one with spheroidal outer and spherical inner boundary and inversely for the other. The problem is solved by two different methods. In the first, the electromagnetic field is expressed in terms of both spherical and spheroidal eigenvectors, connected with one another by well-known expansion formulas. In the second, a shape perturbation method, the field is expressed in terms of spherical eigenvectors only, while the equation of the spheroidal boundary is given in spherical coordinates. The analytical determination of the eigenfrequencies is possible for small values of h = d/(2R(2)), (h much less than 1), with d the interfocal distance of the spheroidal boundary and 2R2 the length of its rotation axis. In this case exact, closed-form expressions are obtained for the expansion coefficients g(nsm)((2)) and g(nsm)((4)) in the resulting relation f(nsm)(h) = f(ns)(0) [1 + h(2) g(nsm)((2)) + h(4) g(nsm) ((4)) + O(h(6))]. Analogous expressions are obtained by using the parameter v = 1 - (R-2/R-2')(2) (for \v\ much less than 1), with 2R(2)' the length of the other axis of the spheroidal boundary. Numerical results are given for various values of the parameters. |
en |
heal.publisher |
VSP BV |
en |
heal.journalName |
Journal of Electromagnetic Waves and Applications |
en |
dc.identifier.isi |
ISI:000174926100011 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
253 |
en |
dc.identifier.epage |
280 |
en |