HEAL DSpace

Electromagnetic eigenfrequencies in concentric spheroidal-spherical cavities

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Kokkorakis, GC en
dc.contributor.author Roumeliotis, JA en
dc.date.accessioned 2014-03-01T01:17:48Z
dc.date.available 2014-03-01T01:17:48Z
dc.date.issued 2002 en
dc.identifier.issn 0920-5071 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14671
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0036219321&partnerID=40&md5=5cdbac12b338ee0191eb3bb4c199f309 en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Physics, Applied en
dc.subject.classification Physics, Mathematical en
dc.subject.other Bessel functions en
dc.subject.other Boundary conditions en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Electric field effects en
dc.subject.other Perturbation techniques en
dc.subject.other Electromagnetic eigenfrequencies en
dc.subject.other Electromagnetic field effects en
dc.title Electromagnetic eigenfrequencies in concentric spheroidal-spherical cavities en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2002 en
heal.abstract The electromagnetic eigenfrequencies f(nsm) in perfectly conducting concentric spheroidal-spherical cavities are determined analytically. Two types of cavities are examined, one with spheroidal outer and spherical inner boundary and inversely for the other. The problem is solved by two different methods. In the first, the electromagnetic field is expressed in terms of both spherical and spheroidal eigenvectors, connected with one another by well-known expansion formulas. In the second, a shape perturbation method, the field is expressed in terms of spherical eigenvectors only, while the equation of the spheroidal boundary is given in spherical coordinates. The analytical determination of the eigenfrequencies is possible for small values of h = d/(2R(2)), (h much less than 1), with d the interfocal distance of the spheroidal boundary and 2R2 the length of its rotation axis. In this case exact, closed-form expressions are obtained for the expansion coefficients g(nsm)((2)) and g(nsm)((4)) in the resulting relation f(nsm)(h) = f(ns)(0) [1 + h(2) g(nsm)((2)) + h(4) g(nsm) ((4)) + O(h(6))]. Analogous expressions are obtained by using the parameter v = 1 - (R-2/R-2')(2) (for \v\ much less than 1), with 2R(2)' the length of the other axis of the spheroidal boundary. Numerical results are given for various values of the parameters. en
heal.publisher VSP BV en
heal.journalName Journal of Electromagnetic Waves and Applications en
dc.identifier.isi ISI:000174926100011 en
dc.identifier.volume 16 en
dc.identifier.issue 2 en
dc.identifier.spage 253 en
dc.identifier.epage 280 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record