HEAL DSpace

Enhancing the performance of the FETI method with preconditioning techniques implemented on clusters of networked computers

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Charmpis, DC en
dc.contributor.author Papadrakakis, M en
dc.date.accessioned 2014-03-01T01:17:48Z
dc.date.available 2014-03-01T01:17:48Z
dc.date.issued 2002 en
dc.identifier.issn 0178-7675 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14678
dc.subject Distributed en
dc.subject Domain decomposition en
dc.subject FETI en
dc.subject Parallel en
dc.subject PC cluster en
dc.subject Preconditioning en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Algorithms en
dc.subject.other Computational methods en
dc.subject.other Degrees of freedom (mechanics) en
dc.subject.other Finite element method en
dc.subject.other Iterative methods en
dc.subject.other Matrix algebra en
dc.subject.other Problem solving en
dc.subject.other Stiffness matrix en
dc.subject.other Domain decomposition en
dc.subject.other Computer networks en
dc.title Enhancing the performance of the FETI method with preconditioning techniques implemented on clusters of networked computers en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00466-002-0363-6 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00466-002-0363-6 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract The FETI domain decomposition method for solving large-scale problems in computational structural mechanics involves the solution of an interface problem, which is handled by a Preconditioned Conjugate Projected Gradient (PCPG) algorithm. Two preconditioners are widely used to accelerate the convergence of the iterative PCPG algorithm: the optimal Dirichlet preconditioner and the economical lumped preconditioner. The Dirichlet preconditioner is computationally more efficient than the lumped preconditioner for ill-conditioned problems, but needs additional storage for the stiffness matrices of the subdomains' internal degrees of freedom (d.o.f.). In this study a new set of PCPG preconditioners is presented by providing approximate expressions to the inverse iteration matrix of the PCPG algorithm. The resulting approximate Dirichlet preconditioners are obtained by using instead of the whole stiffness matrix of the internal d.o.f. in each subdomain the following alternatives: a diagonal scaling matrix, a SSOR type matrix or an incomplete Cholesky factorization matrix. The computational behavior and performance of the proposed PCPG preconditioners is evaluated using an implementation of the FETI method on a cluster of ethernet-networked PCs running the message passing software PVM. It is demonstrated that the FETI method equipped with the approximate Dirichlet preconditioners leads for a number of large-scale problems to faster and less storage demanding overall solutions than with either Dirichlet or lumped preconditioner. en
heal.publisher SPRINGER-VERLAG en
heal.journalName Computational Mechanics en
dc.identifier.doi 10.1007/s00466-002-0363-6 en
dc.identifier.isi ISI:000180030900002 en
dc.identifier.volume 30 en
dc.identifier.issue 1 en
dc.identifier.spage 12 en
dc.identifier.epage 28 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής