HEAL DSpace

Estimates of blow-up time for a non-local problem modelling an Ohmic heating process

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kavallaris, NI en
dc.contributor.author Nikolopoulos, CV en
dc.contributor.author Tzanetis, DE en
dc.date.accessioned 2014-03-01T01:17:49Z
dc.date.available 2014-03-01T01:17:49Z
dc.date.issued 2002 en
dc.identifier.issn 0956-7925 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14682
dc.subject Blow Up en
dc.subject.classification Mathematics, Applied en
dc.subject.other THERMISTOR PROBLEM en
dc.subject.other TEMPERATURE en
dc.subject.other EXISTENCE en
dc.subject.other EQUATIONS en
dc.title Estimates of blow-up time for a non-local problem modelling an Ohmic heating process en
heal.type journalArticle en
heal.identifier.primary 10.1017/S0956792501004831 en
heal.identifier.secondary http://dx.doi.org/10.1017/S0956792501004831 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract We consider an initial boundary value problem for the non-local equation, u(t) = u(xx) + lambdaf(u)/(integral(-1)(1)f (u)dx)(2), with Robin boundary conditions. It is known that there exists a critical value of the parameter lambda, say lambda*, such that for lambda>lambda* there is no stationary solution and the solution u(x,t) blows up globally in finite time t*, while for lambda<&lambda;* there exist stationary solutions. We find, for decreasing f and for &lambda;>lambda* upper and lower bounds for t*, by using comparison methods. For f (u) = e(-u), we give an asymptotic estimate: t* similar to t(u)(lambda-lambda*)(-1/2) for 0<(&lambda;-&lambda;*) &MLT; 1, where t(u) is a constant. A numerical estimate is obtained using a Crank-Nicolson scheme. en
heal.publisher CAMBRIDGE UNIV PRESS en
heal.journalName European Journal of Applied Mathematics en
dc.identifier.doi 10.1017/S0956792501004831 en
dc.identifier.isi ISI:000177267000005 en
dc.identifier.volume 13 en
dc.identifier.issue 3 en
dc.identifier.spage 337 en
dc.identifier.epage 351 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής