dc.contributor.author |
Kavallaris, NI |
en |
dc.contributor.author |
Nikolopoulos, CV |
en |
dc.contributor.author |
Tzanetis, DE |
en |
dc.date.accessioned |
2014-03-01T01:17:49Z |
|
dc.date.available |
2014-03-01T01:17:49Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0956-7925 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14682 |
|
dc.subject |
Blow Up |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
THERMISTOR PROBLEM |
en |
dc.subject.other |
TEMPERATURE |
en |
dc.subject.other |
EXISTENCE |
en |
dc.subject.other |
EQUATIONS |
en |
dc.title |
Estimates of blow-up time for a non-local problem modelling an Ohmic heating process |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1017/S0956792501004831 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1017/S0956792501004831 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
We consider an initial boundary value problem for the non-local equation, u(t) = u(xx) + lambdaf(u)/(integral(-1)(1)f (u)dx)(2), with Robin boundary conditions. It is known that there exists a critical value of the parameter lambda, say lambda*, such that for lambda>lambda* there is no stationary solution and the solution u(x,t) blows up globally in finite time t*, while for lambda<λ* there exist stationary solutions. We find, for decreasing f and for λ>lambda* upper and lower bounds for t*, by using comparison methods. For f (u) = e(-u), we give an asymptotic estimate: t* similar to t(u)(lambda-lambda*)(-1/2) for 0<(λ-λ*) &MLT; 1, where t(u) is a constant. A numerical estimate is obtained using a Crank-Nicolson scheme. |
en |
heal.publisher |
CAMBRIDGE UNIV PRESS |
en |
heal.journalName |
European Journal of Applied Mathematics |
en |
dc.identifier.doi |
10.1017/S0956792501004831 |
en |
dc.identifier.isi |
ISI:000177267000005 |
en |
dc.identifier.volume |
13 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
337 |
en |
dc.identifier.epage |
351 |
en |