dc.contributor.author |
Tsitouras, Ch |
en |
dc.date.accessioned |
2014-03-01T01:17:54Z |
|
dc.date.available |
2014-03-01T01:17:54Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0307-904X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14693 |
|
dc.subject |
Oscillatory initial value problems |
en |
dc.subject |
Pairs of embedded methods |
en |
dc.subject |
Phase-lag |
en |
dc.subject |
Plate deflection |
en |
dc.subject |
Runge-Kutta |
en |
dc.subject |
Vibratory systems |
en |
dc.subject |
Wave equation |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Oscillations |
en |
dc.subject.other |
Wave equations |
en |
dc.subject.other |
Vibratory systems |
en |
dc.subject.other |
Runge Kutta methods |
en |
dc.subject.other |
mathematical method |
en |
dc.title |
Explicit Runge-Kutta pairs appropriate for engineering applications |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0307-904X(01)00042-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0307-904X(01)00042-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
Runge-Kutta (RK) pairs of orders seven and five with minimal phase lag are derived for the numerical approximation of ordinary differential equations with engineering applications. For a class of initial value problems, whose solution is known to be described by free oscillations or free oscillations of high frequency with forced oscillations of low frequency superimposed, the new pair seem to offer clear advantages with respect to older pairs. The new pair is much more efficient than methods using the same number of stages, when applied in some problems of the plate deflection, the wave equation or vibratory systems. (C) 2002 Elsevier Science Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
Applied Mathematical Modelling |
en |
dc.identifier.doi |
10.1016/S0307-904X(01)00042-7 |
en |
dc.identifier.isi |
ISI:000172931800006 |
en |
dc.identifier.volume |
26 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
77 |
en |
dc.identifier.epage |
88 |
en |