HEAL DSpace

Extension of second-order Stokes theory to variable bathymetry

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Belibassakis, KA en
dc.contributor.author Athanassoulis, GA en
dc.date.accessioned 2014-03-01T01:17:54Z
dc.date.available 2014-03-01T01:17:54Z
dc.date.issued 2002 en
dc.identifier.issn 0022-1120 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14697
dc.subject Second Order en
dc.subject.classification Mechanics en
dc.subject.classification Physics, Fluids & Plasmas en
dc.subject.other Computational fluid dynamics en
dc.subject.other Computer simulation en
dc.subject.other Energy transfer en
dc.subject.other Second harmonic generation en
dc.subject.other Nonlinear waves en
dc.subject.other Bathymetry en
dc.subject.other bathymetry en
dc.subject.other Stokes flow en
dc.subject.other wave diffraction en
dc.subject.other wave propagation en
dc.subject.other wave reflection en
dc.subject.other wave-seafloor interaction en
dc.subject.other bathymetry en
dc.subject.other Stokes formula en
dc.subject.other wave diffraction en
dc.subject.other wave propagation en
dc.subject.other wave reflection en
dc.subject.other wave-seafloor interaction en
dc.title Extension of second-order Stokes theory to variable bathymetry en
heal.type journalArticle en
heal.identifier.primary 10.1017/S0022112002008753 en
heal.identifier.secondary http://dx.doi.org/10.1017/S0022112002008753 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract In the present work second-order Stokes theory has been extended to the case of a generally shaped bottom profile connecting two half-strips of constant (but possibly different) depths, initiating a method for generalizing the Stokes hierarchy of second- and higher-order wave theory, without the assumption of spatial periodicity. In modelling the wave-bottom interaction three partial problems arise: the first order, the unsteady second order and the steady second order. The three problems are solved by using appropriate extensions of the consistent coupled-mode theory developed by the present authors for the linearized problem. Apart from the Stokes small-amplitude expansibility assumption, no additional asymptotic assumptions have been introduced. Thus, bottom slope and curvature may be arbitrary, provided that the resulting wave dynamics is Stokes-compatible. Accordingly, the present theory can be used for the study of various wave phenomena (propagation, reflection, diffraction) arising from the interaction of weakly nonlinear waves with a general bottom topography, in intermediate water depth. An interesting phenomenon, that is also very naturally resolved, is the net mass flux induced by the depth variation, which is consistently calculated by means of the steady second-order potential. The present method has been validated against experimental results and fully nonlinear numerical solutions. It has been found that it correctly predicts the second-order harmonic generation, the amplitude nonlinearity, and the amplitude variation due to non-resonant first- and-second harmonic interaction, up to the point where the energy transfer to the third and higher harmonics can no longer be neglected. Under the restriction of weak nonlinearity, the present model can be extended to treat obliquely incident waves and the resulting second-order refraction patterns, and to study bichromatic and/or bidirectional wave-wave interactions, with application to the transformation of second-order random seas in variable bathymetry regions. en
heal.publisher CAMBRIDGE UNIV PRESS en
heal.journalName Journal of Fluid Mechanics en
dc.identifier.doi 10.1017/S0022112002008753 en
dc.identifier.isi ISI:000177475500002 en
dc.identifier.volume 464 en
dc.identifier.spage 35 en
dc.identifier.epage 80 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής