dc.contributor.author |
Mamalis, AG |
en |
dc.contributor.author |
Vottea, IN |
en |
dc.contributor.author |
Manolakos, DE |
en |
dc.date.accessioned |
2014-03-01T01:17:54Z |
|
dc.date.available |
2014-03-01T01:17:54Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0921-5107 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14698 |
|
dc.subject |
Explosive compaction/cladding |
en |
dc.subject |
Finite element |
en |
dc.subject |
Superconductors |
en |
dc.subject.classification |
Materials Science, Multidisciplinary |
en |
dc.subject.classification |
Physics, Condensed Matter |
en |
dc.subject.other |
Ceramic matrix composites |
en |
dc.subject.other |
Compaction |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Explosive forming |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Metal cladding |
en |
dc.subject.other |
Multilayers |
en |
dc.subject.other |
Pressure distribution |
en |
dc.subject.other |
Sandwich structures |
en |
dc.subject.other |
Temperature distribution |
en |
dc.subject.other |
Yttrium barium copper oxides |
en |
dc.subject.other |
Explosive compaction |
en |
dc.subject.other |
High temperature superconductors |
en |
dc.title |
Fabrication of metal/sheathed high-Tc superconducting composites by explosive compaction/cladding: Numerical simulation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0921-5107(01)00913-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0921-5107(01)00913-8 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
Explosive compaction/cladding, usually followed by forming, is a technique used extensively for fabricating multilayer sandwich components of the same or different materials. In this paper, we report on experimental and numerical investigations into the explosive compaction/cladding for fabricating superconducting Y-Ba-Cu-O ceramic/metal composite grooved discs. The manufacturing process is numerically simulated by using the explicit finite element code LS-DYNA3D. The final dimensions of the compact and the pressure, temperature and density distributions during the entire cladding compaction process are predicted. The proposed model is validated, as the numerical results obtained were in good agreement with the experimental results. (C) 2002 Elsevier Science B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE SA |
en |
heal.journalName |
Materials Science and Engineering B: Solid-State Materials for Advanced Technology |
en |
dc.identifier.doi |
10.1016/S0921-5107(01)00913-8 |
en |
dc.identifier.isi |
ISI:000174596300006 |
en |
dc.identifier.volume |
90 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
254 |
en |
dc.identifier.epage |
260 |
en |