HEAL DSpace

Field induced in inhomogeneous spheres by external sources. I. The scalar case

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kokkorakis, GC en
dc.contributor.author Fikioris, JG en
dc.contributor.author Fikioris, G en
dc.date.accessioned 2014-03-01T01:17:55Z
dc.date.available 2014-03-01T01:17:55Z
dc.date.issued 2002 en
dc.identifier.issn 0001-4966 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14701
dc.subject.classification Acoustics en
dc.subject.other Harmonic analysis en
dc.subject.other Integral equations en
dc.subject.other Magnetoelectric effects en
dc.subject.other Numerical methods en
dc.subject.other Optimization en
dc.subject.other Penetrable bodies en
dc.subject.other Acoustics en
dc.subject.other acoustics en
dc.subject.other acoustics en
dc.subject.other analytic method en
dc.subject.other article en
dc.subject.other electromagnetic field en
dc.subject.other evaluation en
dc.subject.other mathematical analysis en
dc.subject.other mathematical model en
dc.subject.other priority journal en
dc.title Field induced in inhomogeneous spheres by external sources. I. The scalar case en
heal.type journalArticle en
heal.identifier.primary 10.1121/1.1498274 en
heal.identifier.secondary http://dx.doi.org/10.1121/1.1498274 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract The evaluation of acoustic or electromagnetic fields induced in the interior of inhomogeneous penetrable bodies by external sources is based on well-known volume integral equations; this is particularly true for bodies of arbitrary shape and/or composition, for which separation of variables fails. In this paper the investigation focuses on acoustic (scalar fields) in inhomogeneous spheres of arbitrary composition, i.e., with r-, theta- or even p-dependent medium parameters. The volume integral equation is solved by a hybrid (analytical-numerical) method, which takes advantage of the orthogonal properties of spherical harmonics, and, in particular, of the so-called Dini's expansions of the radial functions, whose convergence is optimized. The numerical part comes at the end; it involves the evaluation of certain definite integrals and the matrix inversion for the expansion coefficients of the solution. The scalar case treated here serves as a steppingstone for the solution of the more difficult electromagnetic problem. (C) 2002 Acoustical Society of America. en
heal.publisher ACOUSTICAL SOC AMER AMER INST PHYSICS en
heal.journalName Journal of the Acoustical Society of America en
dc.identifier.doi 10.1121/1.1498274 en
dc.identifier.isi ISI:000178486100009 en
dc.identifier.volume 112 en
dc.identifier.issue 4 en
dc.identifier.spage 1297 en
dc.identifier.epage 1306 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής