dc.contributor.author |
Kokkorakis, GC |
en |
dc.contributor.author |
Fikioris, JG |
en |
dc.contributor.author |
Fikioris, G |
en |
dc.date.accessioned |
2014-03-01T01:17:55Z |
|
dc.date.available |
2014-03-01T01:17:55Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0001-4966 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14701 |
|
dc.subject.classification |
Acoustics |
en |
dc.subject.other |
Harmonic analysis |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Magnetoelectric effects |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Penetrable bodies |
en |
dc.subject.other |
Acoustics |
en |
dc.subject.other |
acoustics |
en |
dc.subject.other |
acoustics |
en |
dc.subject.other |
analytic method |
en |
dc.subject.other |
article |
en |
dc.subject.other |
electromagnetic field |
en |
dc.subject.other |
evaluation |
en |
dc.subject.other |
mathematical analysis |
en |
dc.subject.other |
mathematical model |
en |
dc.subject.other |
priority journal |
en |
dc.title |
Field induced in inhomogeneous spheres by external sources. I. The scalar case |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1121/1.1498274 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1121/1.1498274 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
The evaluation of acoustic or electromagnetic fields induced in the interior of inhomogeneous penetrable bodies by external sources is based on well-known volume integral equations; this is particularly true for bodies of arbitrary shape and/or composition, for which separation of variables fails. In this paper the investigation focuses on acoustic (scalar fields) in inhomogeneous spheres of arbitrary composition, i.e., with r-, theta- or even p-dependent medium parameters. The volume integral equation is solved by a hybrid (analytical-numerical) method, which takes advantage of the orthogonal properties of spherical harmonics, and, in particular, of the so-called Dini's expansions of the radial functions, whose convergence is optimized. The numerical part comes at the end; it involves the evaluation of certain definite integrals and the matrix inversion for the expansion coefficients of the solution. The scalar case treated here serves as a steppingstone for the solution of the more difficult electromagnetic problem. (C) 2002 Acoustical Society of America. |
en |
heal.publisher |
ACOUSTICAL SOC AMER AMER INST PHYSICS |
en |
heal.journalName |
Journal of the Acoustical Society of America |
en |
dc.identifier.doi |
10.1121/1.1498274 |
en |
dc.identifier.isi |
ISI:000178486100009 |
en |
dc.identifier.volume |
112 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
1297 |
en |
dc.identifier.epage |
1306 |
en |