HEAL DSpace

Fuzzy non-homogeneous Markov systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Symeonaki, MA en
dc.contributor.author Stamou, GB en
dc.contributor.author Tzafestas, SG en
dc.date.accessioned 2014-03-01T01:17:56Z
dc.date.available 2014-03-01T01:17:56Z
dc.date.issued 2002 en
dc.identifier.issn 0924-669X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14709
dc.subject Fuzzy logic en
dc.subject Fuzzy Markov system en
dc.subject Fuzzy reasoning en
dc.subject Non-homogeneous Markov systems en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.other Asymptotic stability en
dc.subject.other Fuzzy sets en
dc.subject.other Logic programming en
dc.subject.other Markov processes en
dc.subject.other Probability distributions en
dc.subject.other Uncertain systems en
dc.subject.other Fuzzy logic en
dc.subject.other Fuzzy Markov systems en
dc.subject.other Fuzzy reasoning en
dc.subject.other Nonhomogeneous Markov systems en
dc.subject.other Expert systems en
dc.title Fuzzy non-homogeneous Markov systems en
heal.type journalArticle en
heal.identifier.primary 10.1023/A:1016164915513 en
heal.identifier.secondary http://dx.doi.org/10.1023/A:1016164915513 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract In this paper the theory of fuzzy logic and fuzzy reasoning is combined with the theory in Markov systems and the concept of a fuzzy non-homogeneous Markov system is introduced for the first time. This is an effort to deal with the uncertainty introduced in the estimation of the transition probabilities and the input probabilities in Markov systems. The asymptotic behaviour of the fuzzy Markov system and its asymptotic variability is considered and given in closed analytic form. Moreover, the asymptotically attainable structures of the system are estimated also in a closed analytic form under some realistic assumptions. The importance of this result lies in the fact that in most cases the traditional methods for estimating the probabilities can not be used due to lack of data and measurement errors. The introduction of fuzzy logic into Markov systems represents a powerful tool for taking advantage of the symbolic knowledge that the experts of the systems possess. en
heal.publisher KLUWER ACADEMIC PUBL en
heal.journalName Applied Intelligence en
dc.identifier.doi 10.1023/A:1016164915513 en
dc.identifier.isi ISI:000176762400005 en
dc.identifier.volume 17 en
dc.identifier.issue 2 en
dc.identifier.spage 203 en
dc.identifier.epage 214 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής