dc.contributor.author |
Rassias, TM |
en |
dc.contributor.author |
Verma, RU |
en |
dc.date.accessioned |
2014-03-01T01:17:56Z |
|
dc.date.available |
2014-03-01T01:17:56Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
1331-4343 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14711 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0036001679&partnerID=40&md5=a88c394f14eb4d4961ff6fc3d93e571e |
en |
dc.subject |
Approximate solution |
en |
dc.subject |
Approximation-solvability |
en |
dc.subject |
Cocoercive mapping |
en |
dc.subject |
General auxiliary variational inequality problem |
en |
dc.subject |
Partially relaxed monotone mapping |
en |
dc.subject |
Strongly monotone mapping |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
COMPLEMENTARITY-PROBLEMS |
en |
dc.subject.other |
PROJECTION |
en |
dc.subject.other |
DECOMPOSITION |
en |
dc.subject.other |
CONVERGENCE |
en |
dc.title |
General auxiliary problem principle and solvability of a class of nonlinear mixed variational inequalities involving partially relaxed monotone mappings |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
The approximation-solvability of the following class of nonlinear variational inequality (NVI) problems based on anew general auxiliary problem principle is presented: Find an element x* is an element of K such that <T(x*),x-->x*> + f(x) - f(x*) greater than or equal to 0 for all x is an element of K, where T : K --> H is a partially relaxed monotone mapping from a nonempty closed convex subset K of a real Hilbert space H into H, and f : K --> R is a continuous convex function on K. The general auxiliary problem principle is described as follows: for given iterate x(k) is an element of K and for a constant p > 0, determine x(k+1) such that (for k greater than or equal to 0) <pT(x(k)) + pL(x(k+1)) + h'(x(k+1)) - pL(x(k)) - h'(x(k)), x - x(k+1>) + P[f(x) - f(x(k+1))] greater than or equal to 0 for all x is an element of K, where L : K --> H is any mapping on K, h : K - R is a function on K and h' is the derivative of h. |
en |
heal.publisher |
ELEMENT |
en |
heal.journalName |
Mathematical Inequalities and Applications |
en |
dc.identifier.isi |
ISI:000173815200017 |
en |
dc.identifier.volume |
5 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
163 |
en |
dc.identifier.epage |
170 |
en |