HEAL DSpace

General auxiliary problem principle and solvability of a class of nonlinear mixed variational inequalities involving partially relaxed monotone mappings

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Rassias, TM en
dc.contributor.author Verma, RU en
dc.date.accessioned 2014-03-01T01:17:56Z
dc.date.available 2014-03-01T01:17:56Z
dc.date.issued 2002 en
dc.identifier.issn 1331-4343 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14711
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0036001679&partnerID=40&md5=a88c394f14eb4d4961ff6fc3d93e571e en
dc.subject Approximate solution en
dc.subject Approximation-solvability en
dc.subject Cocoercive mapping en
dc.subject General auxiliary variational inequality problem en
dc.subject Partially relaxed monotone mapping en
dc.subject Strongly monotone mapping en
dc.subject.classification Mathematics en
dc.subject.other COMPLEMENTARITY-PROBLEMS en
dc.subject.other PROJECTION en
dc.subject.other DECOMPOSITION en
dc.subject.other CONVERGENCE en
dc.title General auxiliary problem principle and solvability of a class of nonlinear mixed variational inequalities involving partially relaxed monotone mappings en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2002 en
heal.abstract The approximation-solvability of the following class of nonlinear variational inequality (NVI) problems based on anew general auxiliary problem principle is presented: Find an element x* is an element of K such that <T(x*),x-->x*> + f(x) - f(x*) greater than or equal to 0 for all x is an element of K, where T : K --> H is a partially relaxed monotone mapping from a nonempty closed convex subset K of a real Hilbert space H into H, and f : K --> R is a continuous convex function on K. The general auxiliary problem principle is described as follows: for given iterate x(k) is an element of K and for a constant p > 0, determine x(k+1) such that (for k greater than or equal to 0) <pT(x(k)) + pL(x(k+1)) + h'(x(k+1)) - pL(x(k)) - h'(x(k)), x - x(k+1>) + P[f(x) - f(x(k+1))] greater than or equal to 0 for all x is an element of K, where L : K --> H is any mapping on K, h : K - R is a function on K and h' is the derivative of h. en
heal.publisher ELEMENT en
heal.journalName Mathematical Inequalities and Applications en
dc.identifier.isi ISI:000173815200017 en
dc.identifier.volume 5 en
dc.identifier.issue 1 en
dc.identifier.spage 163 en
dc.identifier.epage 170 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής