dc.contributor.author |
Karachalios, NI |
en |
dc.contributor.author |
Stavrakakis, NM |
en |
dc.date.accessioned |
2014-03-01T01:17:56Z |
|
dc.date.available |
2014-03-01T01:17:56Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
1021-9722 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14715 |
|
dc.subject |
Attractors |
en |
dc.subject |
Dynamical Systems |
en |
dc.subject |
Schrödinger Equations |
en |
dc.subject |
Unbounded Domains |
en |
dc.subject |
Weighted Sobolev Spaces |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
CAUCHY-PROBLEM |
en |
dc.subject.other |
EVOLUTION-EQUATIONS |
en |
dc.subject.other |
EXISTENCE |
en |
dc.title |
Global attractor for the weakly damped driven Schrödinger equation in H2 (ℝ) |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00030-002-8132-y |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00030-002-8132-y |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
We discuss the asymptotic behaviour of the Schrödinger equation iut + ut + iαu - kσ(|u|2)u = f, x ε ℝ, t ≥ 0, α, k > 0 with the initial condition u(x, 0) = uo(x). We prove existence of a global attractor in H2(ℝ), by using a decomposition of the semigroup in weighted Sobolev spaces to overcome the noncompactness of the classical Sobolev embeddings. 2000 Mathematics Subject Classification: 35B40, 35L15, 35L70, 35L80, 58F39. |
en |
heal.publisher |
BIRKHAUSER VERLAG AG |
en |
heal.journalName |
Nonlinear Differential Equations and Applications |
en |
dc.identifier.doi |
10.1007/s00030-002-8132-y |
en |
dc.identifier.isi |
ISI:000177840000007 |
en |
dc.identifier.volume |
9 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
347 |
en |
dc.identifier.epage |
360 |
en |