dc.contributor.author |
Liakos, HH |
en |
dc.contributor.author |
Keramida, EP |
en |
dc.contributor.author |
Founti, MA |
en |
dc.contributor.author |
Markatos, NC |
en |
dc.date.accessioned |
2014-03-01T01:17:57Z |
|
dc.date.available |
2014-03-01T01:17:57Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0947-7411 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14720 |
|
dc.subject |
Experimental Data |
en |
dc.subject |
Finite Volume |
en |
dc.subject |
Heat and Mass Transfer |
en |
dc.subject |
Impinging Jet |
en |
dc.subject |
Local Extinction |
en |
dc.subject |
Mathematical Model |
en |
dc.subject |
Radiative Heat Transfer |
en |
dc.subject |
Temperature Gradient |
en |
dc.subject |
Turbulence Model |
en |
dc.subject.classification |
Thermodynamics |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Boundary layer flow |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Heat radiation |
en |
dc.subject.other |
High temperature properties |
en |
dc.subject.other |
Jets |
en |
dc.subject.other |
Mass transfer |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Natural gas |
en |
dc.subject.other |
Viscosity of liquids |
en |
dc.subject.other |
Eddy viscosity turbulence model |
en |
dc.subject.other |
Granite plate |
en |
dc.subject.other |
Radiative heat transfer |
en |
dc.subject.other |
Turbulent premixed flame |
en |
dc.subject.other |
Turbulent flow |
en |
dc.title |
Heat and mass transfer study of impinging turbulent premixed flames |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s002310100226 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s002310100226 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
Impinging jet combusting flows on granite plates are studied. A mathematical model for calculating heat release in turbulent impinging premixed flames is developed. The combustion including radiative heat transfer and local extinction effects, and flow characteristics are modeled using a finite volume computational approach. Two different eddy viscosity turbulence models, namely the standard k-epsilon and the RNG k-epsilon model with and without radiation (discrete transfer model) are assessed. The heat released predictions are compared with experimental data and the agreement is satisfactory only when both radiative heat transfer and local extinction modeling are taken into account. The results indicate that the main effect of radiation is the decrease of temperature values near the jet stagnation point and along the plate surface. Radiation increases temperature gradients and affects predicted turbulence levels independently of the closure model used. Also, the RNG k-epsilon predicts higher temperatures close the solid plate, with and without radiative heat transfer. |
en |
heal.publisher |
SPRINGER-VERLAG |
en |
heal.journalName |
Heat and Mass Transfer/Waerme- und Stoffuebertragung |
en |
dc.identifier.doi |
10.1007/s002310100226 |
en |
dc.identifier.isi |
ISI:000175612400017 |
en |
dc.identifier.volume |
38 |
en |
dc.identifier.issue |
4-5 |
en |
dc.identifier.spage |
425 |
en |
dc.identifier.epage |
432 |
en |