HEAL DSpace

Heat and mass transfer study of impinging turbulent premixed flames

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Liakos, HH en
dc.contributor.author Keramida, EP en
dc.contributor.author Founti, MA en
dc.contributor.author Markatos, NC en
dc.date.accessioned 2014-03-01T01:17:57Z
dc.date.available 2014-03-01T01:17:57Z
dc.date.issued 2002 en
dc.identifier.issn 0947-7411 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14720
dc.subject Experimental Data en
dc.subject Finite Volume en
dc.subject Heat and Mass Transfer en
dc.subject Impinging Jet en
dc.subject Local Extinction en
dc.subject Mathematical Model en
dc.subject Radiative Heat Transfer en
dc.subject Temperature Gradient en
dc.subject Turbulence Model en
dc.subject.classification Thermodynamics en
dc.subject.classification Mechanics en
dc.subject.other Boundary layer flow en
dc.subject.other Computational methods en
dc.subject.other Heat radiation en
dc.subject.other High temperature properties en
dc.subject.other Jets en
dc.subject.other Mass transfer en
dc.subject.other Mathematical models en
dc.subject.other Natural gas en
dc.subject.other Viscosity of liquids en
dc.subject.other Eddy viscosity turbulence model en
dc.subject.other Granite plate en
dc.subject.other Radiative heat transfer en
dc.subject.other Turbulent premixed flame en
dc.subject.other Turbulent flow en
dc.title Heat and mass transfer study of impinging turbulent premixed flames en
heal.type journalArticle en
heal.identifier.primary 10.1007/s002310100226 en
heal.identifier.secondary http://dx.doi.org/10.1007/s002310100226 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract Impinging jet combusting flows on granite plates are studied. A mathematical model for calculating heat release in turbulent impinging premixed flames is developed. The combustion including radiative heat transfer and local extinction effects, and flow characteristics are modeled using a finite volume computational approach. Two different eddy viscosity turbulence models, namely the standard k-epsilon and the RNG k-epsilon model with and without radiation (discrete transfer model) are assessed. The heat released predictions are compared with experimental data and the agreement is satisfactory only when both radiative heat transfer and local extinction modeling are taken into account. The results indicate that the main effect of radiation is the decrease of temperature values near the jet stagnation point and along the plate surface. Radiation increases temperature gradients and affects predicted turbulence levels independently of the closure model used. Also, the RNG k-epsilon predicts higher temperatures close the solid plate, with and without radiative heat transfer. en
heal.publisher SPRINGER-VERLAG en
heal.journalName Heat and Mass Transfer/Waerme- und Stoffuebertragung en
dc.identifier.doi 10.1007/s002310100226 en
dc.identifier.isi ISI:000175612400017 en
dc.identifier.volume 38 en
dc.identifier.issue 4-5 en
dc.identifier.spage 425 en
dc.identifier.epage 432 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής