dc.contributor.author |
Stamatakos, GS |
en |
dc.contributor.author |
Dionysiou, DD |
en |
dc.contributor.author |
Zacharaki, EI |
en |
dc.contributor.author |
Mquravliansky, NA |
en |
dc.contributor.author |
Nikita, KS |
en |
dc.contributor.author |
Uzunoglu, NK |
en |
dc.date.accessioned |
2014-03-01T01:17:58Z |
|
dc.date.available |
2014-03-01T01:17:58Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0018-9219 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14736 |
|
dc.subject |
Cancer |
en |
dc.subject |
Fractionation |
en |
dc.subject |
In silica radiation oncology |
en |
dc.subject |
Modeling |
en |
dc.subject |
Monte Carlo |
en |
dc.subject |
Radiation therapy |
en |
dc.subject |
Simulation |
en |
dc.subject |
Tumor growth |
en |
dc.subject |
Visualization |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
3-D simulation models |
en |
dc.subject.other |
In silica radiation oncology |
en |
dc.subject.other |
Treatment planning system |
en |
dc.subject.other |
Tumor growth |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Fractionation |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Medical imaging |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Patient treatment |
en |
dc.subject.other |
Silica |
en |
dc.subject.other |
Tumors |
en |
dc.subject.other |
Virtual reality |
en |
dc.subject.other |
Visualization |
en |
dc.subject.other |
Radiotherapy |
en |
dc.title |
In silico radiation oncology: Combining novel simulation algorithms with current visualization techniques |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/JPROC.2002.804685 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/JPROC.2002.804685 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
The concept of in silica radiation oncology is clarified in this paper. A brief literature review points out the principal domains in which experimental, mathematical, and three-dimensional (3-D) computer simulation models of tumor growth and response to radiation therapy have been developed. Two paradigms of 3-D simulation models developed by our research group are concisely presented. The first one refers to the in vitro development and radiation response of a tumor spheroid whereas the second one refers to the fractionated radiation response of a clinical tumor in vivo based on the patient's imaging data. In each case, a description of the salient points of the corresponding algorithms and the visualization techniques used takes place. Specific applications of the models to experimental and clinical cases are described and the behavior of the models is two- and three-dimensionally visualized by using virtual reality techniques. Good qualitative agreement with experimental and clinical observations strengthens the applicability of the models to real situations. A protocol for further testing and adaptation is outlined. Therefore, an advanced integrated patient specific decision support and spatio-temporal treatment planning system is expected to emerge after the completion of the necessary experimental tests and clinical evaluation. © 2002 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
Proceedings of the IEEE |
en |
dc.identifier.doi |
10.1109/JPROC.2002.804685 |
en |
dc.identifier.isi |
ISI:000179204700007 |
en |
dc.identifier.volume |
90 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
1764 |
en |
dc.identifier.epage |
1777 |
en |