dc.contributor.author |
Kontaxakis, G |
en |
dc.contributor.author |
Strauss, LG |
en |
dc.contributor.author |
Thireou, T |
en |
dc.contributor.author |
Ledesma-Carbayo, MJ |
en |
dc.contributor.author |
Santos, A |
en |
dc.contributor.author |
Pavlopoulos, SA |
en |
dc.contributor.author |
Dimitrakopoulou-Strauss, A |
en |
dc.date.accessioned |
2014-03-01T01:18:00Z |
|
dc.date.available |
2014-03-01T01:18:00Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
15361632 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14751 |
|
dc.subject |
Attenuation correction factors |
en |
dc.subject |
Distributed pentium systems |
en |
dc.subject |
Iterative image reconstruction |
en |
dc.subject |
Maximum likelihood expectation maximization |
en |
dc.subject |
Median root prior |
en |
dc.subject |
Ordered subsets |
en |
dc.subject |
Web-based interface |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
article |
en |
dc.subject.other |
artifact reduction |
en |
dc.subject.other |
Bayes theorem |
en |
dc.subject.other |
brain |
en |
dc.subject.other |
calculation |
en |
dc.subject.other |
computer interface |
en |
dc.subject.other |
computer program |
en |
dc.subject.other |
computer simulation |
en |
dc.subject.other |
computer system |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
image processing |
en |
dc.subject.other |
image quality |
en |
dc.subject.other |
image reconstruction |
en |
dc.subject.other |
Internet |
en |
dc.subject.other |
positron emission tomography |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
technique |
en |
dc.subject.other |
time |
en |
dc.subject.other |
validation process |
en |
dc.subject.other |
Salvia |
en |
dc.title |
Iterative image reconstruction for clinical PET using ordered subsets, median root prior, and a web-based interface |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S1536-1632(02)00004-5 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S1536-1632(02)00004-5 |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
Purpose: The development, implementation and validation of simple, flexible and efficient iterative image reconstruction (IIR) methods for their take-up in routine clinical positron emission tomography (PET) static or dynamic studies. Procedures: The ordered subsets (OS) technique applied for the acceleration of the maximum likelihood expectation maximization (MLEM) IIR algorithm is here extended to include the weighted least-squares (WLS), image space reconstruction algorithm (ISRA) and the space alternating generalized EM (SAGE). The median root prior (MRP) has been successfully applied as a Bayesian regularization to control the noise level in the reconstructed images. All methods are implemented on distributed Pentium systems and tested using simulated PET data from a brain phantom. A Javascript is used for the initiation of the reconstruction. Results: Taking into consideration the image quality and the time required for the reconstruction, the MRP-OSEM (ordered subsets expectation maximization) seems to provide best results after four to eight iterations, with four subsets and a MRP coefficient of 0.2-0.4. Iterative reconstruction of the transmission images with OS-acceleration and MRP regularization with subsequent calculation of the attenuation correction factors (ACFs) is shown to effectively remove streak artifacts in the emission images, especially along paths of high attenuation. Conclusions: An efficient implementation using distributed processing principles and a web-based interface allows the reconstruction of one frame (with 63 cross-section slices) from a dynamic determination in few minutes. This work showed that regular PC systems can provide fast execution and produce results in clinically meaningful times. This eradicates the argument of the computational burden of the method that prevented the extensive use of IIR in today's modern PET systems. © 2002 Elsevier Science, Inc. All rights reserved. |
en |
heal.journalName |
Molecular Imaging and Biology |
en |
dc.identifier.doi |
10.1016/S1536-1632(02)00004-5 |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
219 |
en |
dc.identifier.epage |
231 |
en |