dc.contributor.author |
Kokkorakis, GC |
en |
dc.contributor.author |
Modinos, A |
en |
dc.contributor.author |
Xanthakis, JP |
en |
dc.date.accessioned |
2014-03-01T01:18:02Z |
|
dc.date.available |
2014-03-01T01:18:02Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0021-8979 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14762 |
|
dc.subject.classification |
Physics, Applied |
en |
dc.subject.other |
Cylindrical arrays |
en |
dc.subject.other |
Electrostatic potentials |
en |
dc.subject.other |
Emitting surface |
en |
dc.subject.other |
Enhancement factor |
en |
dc.subject.other |
Linear combinations |
en |
dc.subject.other |
Local electric field |
en |
dc.subject.other |
Polynomial expression |
en |
dc.subject.other |
Single-wall |
en |
dc.subject.other |
Carbon nanotubes |
en |
dc.subject.other |
Electric fields |
en |
dc.subject.other |
Experiments |
en |
dc.subject.other |
Tubes (components) |
en |
dc.subject.other |
Spheres |
en |
dc.title |
Local electric field at the emitting surface of a carbon nanotube |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1063/1.1448403 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1063/1.1448403 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
We present a method for the calculation of the local electric field at the surface of a nanoscopic emitting structure. The method is here applied to carbon nanotubes (NT) where symmetry makes the application of the method easier. The NT is simulated as a cylindrical array of touching spheres, each sphere representing an atom of the tube. The electrostatic potential is written as a linear combination of the potentials produced by each of the spheres. We calculate the local electric field and the corresponding enhancement factor γ for both open and closed nanotubes. For a closed NT we find for γ a simple polynomial expression in terms of the ratio of the height h of the tube to its radius R, which for h/R<40 reduces to a frequently quoted formula of γ. For an open single-wall NT we find that γ is three times greater than that of a single-wall NT of the same h/R. As the thickness of the wall increases this difference diminishes. From these results one may deduce a possible explanation as to why in some experiments a closed NT emits more current than a corresponding open one while in other experiments the opposite holds true. © 2002 American Institute of Physics. © 2002 American Institute of Physics. |
en |
heal.publisher |
AMER INST PHYSICS |
en |
heal.journalName |
Journal of Applied Physics |
en |
dc.identifier.doi |
10.1063/1.1448403 |
en |
dc.identifier.isi |
ISI:000174663900097 |
en |
dc.identifier.volume |
91 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
4580 |
en |
dc.identifier.epage |
4584 |
en |