dc.contributor.author |
Georgiou, S |
en |
dc.contributor.author |
Koukouvinos, C |
en |
dc.date.accessioned |
2014-03-01T01:18:02Z |
|
dc.date.available |
2014-03-01T01:18:02Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
1071-5797 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14767 |
|
dc.subject |
Construction |
en |
dc.subject |
Diophantine equations |
en |
dc.subject |
Generalized orthogonal designs |
en |
dc.subject |
Self-dual codes |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
GF(7) |
en |
dc.title |
MDS self-dual codes over large prime fields |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1006/ffta.2002.0353 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1006/ffta.2002.0353 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
Combinatorial designs have been used widely in the construction of self-dual codes. Recently a new method of constructing self-dual codes was established using orthogonal designs. This method has led to the construction of many new self-dual codes over small finite fields and rings. In this paper, we generalize this method by using generalized orthogonal designs, and we give another new method that creates and solves Diophantine equations over GF(p) in order to find suitable generator matrices for self-dual codes. We show that under the necessary conditions these methods can be applied as well to small and large fields. We apply these two methods to study self-dual codes over GF(31) and GF(37). Using these methods we obtain some new maximum distance separable self-dual codes of small orders. (C) 2002 Elsevier Science (USA). |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Finite Fields and their Applications |
en |
dc.identifier.doi |
10.1006/ffta.2002.0353 |
en |
dc.identifier.isi |
ISI:000179219100006 |
en |
dc.identifier.volume |
8 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
455 |
en |
dc.identifier.epage |
470 |
en |