dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Yannakakis, N |
en |
dc.date.accessioned |
2014-03-01T01:18:03Z |
|
dc.date.available |
2014-03-01T01:18:03Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0096-3003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14773 |
|
dc.subject |
Adjoint equation |
en |
dc.subject |
Compact embedding |
en |
dc.subject |
Duality theory |
en |
dc.subject |
Evolution triple |
en |
dc.subject |
G-convergence |
en |
dc.subject |
Minimax optimization problem |
en |
dc.subject |
Monotone operator |
en |
dc.subject |
Optimal control |
en |
dc.subject |
Saddle point |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
INTEGRAL FUNCTIONALS |
en |
dc.subject.other |
G-CONVERGENCE |
en |
dc.subject.other |
INCLUSIONS |
en |
dc.subject.other |
OPERATORS |
en |
dc.subject.other |
SYSTEMS |
en |
dc.title |
Minimax control of nonlinear evolution equations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0096-3003(01)00122-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0096-3003(01)00122-9 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
In this paper we study nonlinear parametric optimal control problems: We formulate the relevant minimax problem and prove the existence of an optimal control. Also we derive necessary conditions for saddle point optimality. We also associate to the original optimization problem a dual problem and then for the pair we prove a complete duality theorem. Finally we present two examples of parabolic distributed parameter systems, which illustrate the abstract results. (C) 2002 Published by Elsevier Science Inc. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
Applied Mathematics and Computation |
en |
dc.identifier.doi |
10.1016/S0096-3003(01)00122-9 |
en |
dc.identifier.isi |
ISI:000177595500006 |
en |
dc.identifier.volume |
131 |
en |
dc.identifier.issue |
2-3 |
en |
dc.identifier.spage |
271 |
en |
dc.identifier.epage |
297 |
en |