dc.contributor.author |
Nistazakis, HE |
en |
dc.contributor.author |
Frantzeskakis, DJ |
en |
dc.contributor.author |
Atai, J |
en |
dc.contributor.author |
Malomed, BA |
en |
dc.contributor.author |
Efremidis, N |
en |
dc.contributor.author |
Hizanidis, K |
en |
dc.date.accessioned |
2014-03-01T01:18:04Z |
|
dc.date.available |
2014-03-01T01:18:04Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
1063-651X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14784 |
|
dc.subject |
Critical Value |
en |
dc.subject |
Direct Numerical Simulation |
en |
dc.subject |
Group Velocity |
en |
dc.subject |
Nonlinear Fiber Optics |
en |
dc.subject |
Perturbation Theory |
en |
dc.subject |
Wavelength Division Multiplex |
en |
dc.subject |
ginzburg landau |
en |
dc.subject |
Group Velocity Mismatch |
en |
dc.subject.classification |
Physics, Fluids & Plasmas |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Fiber optics |
en |
dc.subject.other |
Linear equations |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Nonlinear optics |
en |
dc.subject.other |
Optical fibers |
en |
dc.subject.other |
Perturbation techniques |
en |
dc.subject.other |
Wavelength division multiplexing |
en |
dc.subject.other |
Ginzburg-Landau system |
en |
dc.subject.other |
Linear dissipative equation |
en |
dc.subject.other |
Multichannel pulse dynamics |
en |
dc.subject.other |
Nonlinear fiber optics |
en |
dc.subject.other |
Solitary pulses (SP) |
en |
dc.subject.other |
Optical communication |
en |
dc.title |
Multichannel pulse dynamics in a stabilized Ginzburg-Landau system |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1103/PhysRevE.65.036605 |
en |
heal.identifier.secondary |
036605 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1103/PhysRevE.65.036605 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
We study the stability and interactions of chirped solitary pulses in a system of nonlinearly coupled cubic Ginzburg-Landau (CGL) equations with a group-velocity mismatch between them, where each CGL equation is stabilized by linearly coupling it to an additional linear dissipative equation. In the context of nonlinear fiber optics, the model describes transmission and collisions of pulses at different wavelengths in a dual-core fiber, in which the active core is furnished with bandwidth-limited gain, while the other, passive (lossy) one is necessary for stabilization of the solitary pulses. Complete and incomplete collisions of pulses in two channels in the cases of anomalous and normal dispersion in the active core are analyzed by means of perturbation theory and direct numerical simulations. It is demonstrated that the model may readily support fully stable pulses whose collisions are quasielastic, provided that the group-velocity difference between the two channels exceeds a critical value. In the case of quasielastic collisions, the temporal shift of pulses, predicted by the analytical approach, is in semiquantitative agreement with direct numerical results in the case of anomalous dispersion (in the opposite case, the perturbation theory does not apply). We also consider a simultaneous collision between pulses in three channels, concluding that this collision remains quasielastic, and the pulses remain completely stable. Thus, the model may be a starting point for the design of a stabilized wavelength-division- multiplexed transmission system. © 2002 The American Physical Society. |
en |
heal.publisher |
AMERICAN PHYSICAL SOC |
en |
heal.journalName |
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics |
en |
dc.identifier.doi |
10.1103/PhysRevE.65.036605 |
en |
dc.identifier.isi |
ISI:000174549000046 |
en |
dc.identifier.volume |
65 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
036605/1 |
en |
dc.identifier.epage |
036605/12 |
en |