HEAL DSpace

Neural networks retraining for unsupervised video object segmentation of videoconference sequences

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ntalianis, KS en
dc.contributor.author Doulamis, ND en
dc.contributor.author Doulamis, AD en
dc.contributor.author Kollias, SD en
dc.date.accessioned 2014-03-01T01:18:05Z
dc.date.available 2014-03-01T01:18:05Z
dc.date.issued 2002 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14795
dc.subject Adaptive Neural Network en
dc.subject Convex Function en
dc.subject Linear Constraint en
dc.subject Network Performance en
dc.subject Neural Network Classifier en
dc.subject Shape Constraints en
dc.subject Template Matching en
dc.subject Video Object Segmentation en
dc.subject Neural Network en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other IMAGES en
dc.title Neural networks retraining for unsupervised video object segmentation of videoconference sequences en
heal.type journalArticle en
heal.identifier.primary 10.1007/3-540-46084-5_212 en
heal.identifier.secondary http://dx.doi.org/10.1007/3-540-46084-5_212 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract In this paper efficient performance generalization of neural network classifiers is accomplished, for unsupervised video object segmentation in videoconference/videophone sequences. Each time conditions change, a retraining phase is activated and the neural network classifier is adapted to the new environment. During retraining both the former and current knowledge are utilized so that good network generalization is achieved. The retraining algorithm results in the minimization of a convex function subject to linear constraints, leading to very fast network weight adaptation. Current knowledge is unsupervisedly extracted using a face-body detector, based on Gaussian p.d.f models. A binary template matching technique is also incorporated, which imposes shape constraints to candidate face regions. Finally the retrained network performs video object segmentation to the new environment. Several experiments on real sequences indicate the promising performance of the proposed adaptive neural network as efficient video object segmentation tool. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName ARTIFICIAL NEURAL NETWORKS - ICANN 2002 en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/3-540-46084-5_212 en
dc.identifier.isi ISI:000181441900212 en
dc.identifier.volume 2415 en
dc.identifier.spage 1312 en
dc.identifier.epage 1318 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής