dc.contributor.author |
Tsitouras, C |
en |
dc.date.accessioned |
2014-03-01T01:18:05Z |
|
dc.date.available |
2014-03-01T01:18:05Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
1045-9227 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14796 |
|
dc.subject |
Initial value problem (IVP) |
en |
dc.subject |
Orbits |
en |
dc.subject |
Oscillators |
en |
dc.subject |
Runge-Kutta (RK) |
en |
dc.subject |
Vector transfer function |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Computer Science, Hardware & Architecture |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Backpropagation |
en |
dc.subject.other |
Gradient methods |
en |
dc.subject.other |
Initial value problems |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Runge Kutta methods |
en |
dc.subject.other |
Transfer functions |
en |
dc.subject.other |
Hidden layers |
en |
dc.subject.other |
Multidimensional transfer functions |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Neural networks with multidimensional transfer functions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/72.977309 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/72.977309 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
We present a new type of neural network (NN) where the data for the input layer are the value x is an element of R , the vector y is an element of R-m associated to an initial value problem (IVP) with y'(x) = f (y(x)) and a steplength h. Then the stages of a Runge-Kutta (RK) method with trainable coefficients are used as hidden layers for the integration of the IVP using f as transfer function. We take as output two estimations y*,(y) over cap* of IVP at the point x+h. Training the RK method at some test problems and counting the cost of the method under the coefficients used, we may achieve coefficients that help the method to perform better at a wider class of problems. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Neural Networks |
en |
dc.identifier.doi |
10.1109/72.977309 |
en |
dc.identifier.isi |
ISI:000173440100019 |
en |
dc.identifier.volume |
13 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
222 |
en |
dc.identifier.epage |
228 |
en |