HEAL DSpace

Neural networks with multidimensional transfer functions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsitouras, C en
dc.date.accessioned 2014-03-01T01:18:05Z
dc.date.available 2014-03-01T01:18:05Z
dc.date.issued 2002 en
dc.identifier.issn 1045-9227 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14796
dc.subject Initial value problem (IVP) en
dc.subject Orbits en
dc.subject Oscillators en
dc.subject Runge-Kutta (RK) en
dc.subject Vector transfer function en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Computer Science, Hardware & Architecture en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Algorithms en
dc.subject.other Backpropagation en
dc.subject.other Gradient methods en
dc.subject.other Initial value problems en
dc.subject.other Matrix algebra en
dc.subject.other Runge Kutta methods en
dc.subject.other Transfer functions en
dc.subject.other Hidden layers en
dc.subject.other Multidimensional transfer functions en
dc.subject.other Neural networks en
dc.title Neural networks with multidimensional transfer functions en
heal.type journalArticle en
heal.identifier.primary 10.1109/72.977309 en
heal.identifier.secondary http://dx.doi.org/10.1109/72.977309 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract We present a new type of neural network (NN) where the data for the input layer are the value x is an element of R , the vector y is an element of R-m associated to an initial value problem (IVP) with y'(x) = f (y(x)) and a steplength h. Then the stages of a Runge-Kutta (RK) method with trainable coefficients are used as hidden layers for the integration of the IVP using f as transfer function. We take as output two estimations y*,(y) over cap* of IVP at the point x+h. Training the RK method at some test problems and counting the cost of the method under the coefficients used, we may achieve coefficients that help the method to perform better at a wider class of problems. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Neural Networks en
dc.identifier.doi 10.1109/72.977309 en
dc.identifier.isi ISI:000173440100019 en
dc.identifier.volume 13 en
dc.identifier.issue 1 en
dc.identifier.spage 222 en
dc.identifier.epage 228 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής