dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Yannakakis, N |
en |
dc.date.accessioned |
2014-03-01T01:18:06Z |
|
dc.date.available |
2014-03-01T01:18:06Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0025-584X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14801 |
|
dc.subject |
Compact embedding |
en |
dc.subject |
Evolution triple |
en |
dc.subject |
G-convergence |
en |
dc.subject |
Lower semicontinuous and upper semicontinuous multifunctions |
en |
dc.subject |
Minimax optimization problem |
en |
dc.subject |
Monotone operator |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
SET |
en |
dc.title |
Nonlinear parametric evolution inclusions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/1522-2616(200201)233:1<201::AID-MANA201>3.0.CO;2-U |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/1522-2616(200201)233:1<201::AID-MANA201>3.0.CO;2-U |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
In this paper, we study nonlinear parametric evolution inclusions defined on an evolution triple of spaces. The parameter appears in all the data of the problem, including the nonlinear maximal monotone operator, which in concrete situations corresponds to the nonlinear elliptic differential operators. Using the concept of G-convergence for nonlinear maximal monotone operators, we derive conditions for the solution set to be upper semicontinuous, lower semicontinuous and h-continuous. We also solve a relevant minimax problem. Two examples of parabolic systems are presented to illustrate the applicability of our work. |
en |
heal.publisher |
WILEY-V C H VERLAG GMBH |
en |
heal.journalName |
Mathematische Nachrichten |
en |
dc.identifier.doi |
10.1002/1522-2616(200201)233:1<201::AID-MANA201>3.0.CO;2-U |
en |
dc.identifier.isi |
ISI:000173683100013 |
en |
dc.identifier.volume |
233-234 |
en |
dc.identifier.spage |
201 |
en |
dc.identifier.epage |
219 |
en |