dc.contributor.author |
Dodos, P |
en |
dc.date.accessioned |
2014-03-01T01:18:08Z |
|
dc.date.available |
2014-03-01T01:18:08Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0004-9727 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14816 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0036592925&partnerID=40&md5=05c48ccb603e52807005766d7d9f75a1 |
en |
dc.subject.classification |
Mathematics |
en |
dc.title |
On continuity and selections of multifunctions |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
The notions of a Baire-1 and a weak Baire-1 multifunction are defined and a striking analogy between Baire-1 multifunctions and classical Baire-1 functions is established. A selection theorem is presented which asserts that if X is a metrisable space, Y a Polish space and F : X --> 2(Y)\{0} a closed-valued, weak Baire-1 multifunction, then F admits a Baire-1 selection. Using the machinery developed we prove that if X is a Banach space with sepaxable dual, then every weak* usco, defined on a completely metrisable space Z, which values are weakly* compact subsets of the dual, is norm lower semicontinuous on a dense G(delta) set. |
en |
heal.publisher |
AUSTRALIAN MATHEMATICS PUBL ASSOC INC |
en |
heal.journalName |
Bulletin of the Australian Mathematical Society |
en |
dc.identifier.isi |
ISI:000176896800006 |
en |
dc.identifier.volume |
65 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
407 |
en |
dc.identifier.epage |
422 |
en |