dc.contributor.author |
Georgiou, S |
en |
dc.contributor.author |
Koukouvinos, C |
en |
dc.contributor.author |
Stylianou, S |
en |
dc.date.accessioned |
2014-03-01T01:18:09Z |
|
dc.date.available |
2014-03-01T01:18:09Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0167-9473 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14819 |
|
dc.subject |
Good matrices |
en |
dc.subject |
Linear models |
en |
dc.subject |
Optimal designs |
en |
dc.subject |
Orthogonal designs |
en |
dc.subject |
Skew Hadamard matrices |
en |
dc.subject |
Supplementary difference sets |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Fourier transforms |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Optimal designs |
en |
dc.subject.other |
Data reduction |
en |
dc.subject.other |
numerical model |
en |
dc.title |
On good matrices, skew Hadamard matrices and optimal designs |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0167-9473(02)00067-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0167-9473(02)00067-1 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
In two-level factorial experiments and in other linear models the coefficients of the unknown parameters can take one out of two values. When the number of observations is a multiple of four, the D-optimal design is a Hadamard matrix. Skew Hadamard matrices are of special interest due to their use, among others, in constructing D-optimal weighing designs for n equivalent to 3(mod4). A method is given for constructing skew Hadamard matrices which is based on the construction of good matrices. The construction is achieved through an algorithm which is also presented and relies on the discrete Fourier transform. It is known that good matrices of order n, exist for all odd n less than or equal to 35 and n = 127. In this paper, we give for the first time all non-equivalent circulant good matrices of odd order 33 less than or equal to n less than or equal to 39. We note that no good matrices were previously known for orders 37 and 39. These are presented in a table in the form of the corresponding non-equivalent supplementary difference sets. In the sequel we use good matrices to construct some skew Hadamard matrices and orthogonal designs. (C) 2002 Elsevier Science B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Computational Statistics and Data Analysis |
en |
dc.identifier.doi |
10.1016/S0167-9473(02)00067-1 |
en |
dc.identifier.isi |
ISI:000179253400010 |
en |
dc.identifier.volume |
41 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
171 |
en |
dc.identifier.epage |
184 |
en |