dc.contributor.author |
Provatidis, Ch |
en |
dc.contributor.author |
Zafiropoulos, N |
en |
dc.date.accessioned |
2014-03-01T01:18:09Z |
|
dc.date.available |
2014-03-01T01:18:09Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0955-7997 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14822 |
|
dc.subject |
Helmholtz equation |
en |
dc.subject |
Non-uniqueness |
en |
dc.subject |
Off-boundary techniques |
en |
dc.subject |
Sound radiation |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Molecular vibrations |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Sound radiations |
en |
dc.subject.other |
Vibrating surfaces |
en |
dc.subject.other |
Acoustic waves |
en |
dc.title |
On the 'interior Helmholtz integral equation formulation' in sound radiation problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0955-7997(01)00079-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0955-7997(01)00079-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
This paper discusses the accuracy of the sound radiation (Helmholtz equation) BEM analysis when the source points are located inside the vibrating surface. It is shown that when these points are arranged in such a way that they compose a fictitious internal boundary, geometrically similar to the vibrating surface, then fictitious eigenfrequencies appear at larger values than those corresponding to the eigenfrequencies of the internal boundary. In this way, the direct-BEM analysis becomes capable of treating the non-uniqueness problem in a simple and efficient practical manner. which makes the method applicable for industrial purposes. Results are presented for the spherical monopole and dipole, while discussion is extended to a similarly vibrating cube. (C) 2001 Elsevier Science Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Engineering Analysis with Boundary Elements |
en |
dc.identifier.doi |
10.1016/S0955-7997(01)00079-0 |
en |
dc.identifier.isi |
ISI:000173254900003 |
en |
dc.identifier.volume |
26 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
29 |
en |
dc.identifier.epage |
40 |
en |