HEAL DSpace

On the application of artificial intelligence techniques to the quality improvement of industrial processes

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgilakis, P en
dc.contributor.author Hatziargyriou, N en
dc.date.accessioned 2014-03-01T01:18:09Z
dc.date.available 2014-03-01T01:18:09Z
dc.date.issued 2002 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14823
dc.subject Artificial Intelligent en
dc.subject Artificial Neural Network en
dc.subject Difference Set en
dc.subject Iron en
dc.subject Manufacturing Industry en
dc.subject Process Parameters en
dc.subject Product Quality en
dc.subject Quality Improvement en
dc.subject Success Rate en
dc.subject Decision Tree en
dc.subject Neural Network en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.other DECISION TREES en
dc.title On the application of artificial intelligence techniques to the quality improvement of industrial processes en
heal.type journalArticle en
heal.identifier.primary 10.1007/3-540-46014-4_42 en
heal.identifier.secondary http://dx.doi.org/10.1007/3-540-46014-4_42 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract In this paper, the combined use of decision trees and artificial neural networks is examined in the area of quality improvement of industrial processes. The main goal is to achieve a better understanding of different settings of process parameters and to be able to predict more accurately the effect of different parameters on the final product quality. This paper also presents results from the application of the combined decision tree - neural network method to the transformer manufacturing industry. In the environment considered, quality improvement is achieved by increasing the classification success rate of transformer iron losses. The results from the application of the proposed method on a transformer industry demonstrate the feasibility and practicality of this approach for the quality improvement of industrial processes. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName METHODS AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE en
heal.bookName LECTURE NOTES IN ARTIFICIAL INTELLIGENCE en
dc.identifier.doi 10.1007/3-540-46014-4_42 en
dc.identifier.isi ISI:000181051700042 en
dc.identifier.volume 2308 en
dc.identifier.spage 473 en
dc.identifier.epage 484 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής