dc.contributor.author |
Boutsikas, MV |
en |
dc.contributor.author |
Vaggelatou, E |
en |
dc.date.accessioned |
2014-03-01T01:18:09Z |
|
dc.date.available |
2014-03-01T01:18:09Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0001-8678 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14825 |
|
dc.subject |
stochastic orders of convex type |
en |
dc.subject |
probability metrics |
en |
dc.subject |
positive dependence |
en |
dc.subject |
negative dependence |
en |
dc.subject |
compound Poisson approximation |
en |
dc.subject |
rate of convergence in CLT |
en |
dc.subject |
exponential approximation |
en |
dc.subject |
geometric convolutions |
en |
dc.subject |
ageing distributions |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
CENTRAL-LIMIT-THEOREM |
en |
dc.subject.other |
STOP-LOSS PREMIUMS |
en |
dc.subject.other |
STOCHASTIC-DOMINANCE |
en |
dc.subject.other |
ERROR-BOUNDS |
en |
dc.subject.other |
DISTRIBUTIONS |
en |
dc.subject.other |
INEQUALITIES |
en |
dc.subject.other |
APPROXIMATION |
en |
dc.subject.other |
CONVERGENCE |
en |
dc.subject.other |
DEPENDENCE |
en |
dc.subject.other |
MODEL |
en |
dc.title |
On the distance between convex-ordered random variables, with applications |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1239/aap/1025131222 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1239/aap/1025131222 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
Simple approximation techniques are developed exploiting relationships between generalized convex orders and appropriate probability metrics. In particular, the distance between s-convex ordered random variables is investigated. Results connecting positive or negative dependence concepts and convex ordering are also presented. These results lead to approximations and bounds for the distributions of sums of positively or negatively dependent random variables. Applications and extensions of the main results pertaining to compound Poisson, normal and exponential approximation are provided as well. |
en |
heal.publisher |
APPLIED PROBABILITY TRUST |
en |
heal.journalName |
ADVANCES IN APPLIED PROBABILITY |
en |
dc.identifier.doi |
10.1239/aap/1025131222 |
en |
dc.identifier.isi |
ISI:000177097700007 |
en |
dc.identifier.volume |
34 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
349 |
en |
dc.identifier.epage |
374 |
en |