dc.contributor.author |
Fellouris, AG |
en |
dc.contributor.author |
Matiadou, LK |
en |
dc.date.accessioned |
2014-03-01T01:18:09Z |
|
dc.date.available |
2014-03-01T01:18:09Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0305-4470 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14828 |
|
dc.subject.classification |
Physics, Multidisciplinary |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.subject.other |
CAYLEY-HAMILTON THEOREM |
en |
dc.subject.other |
SUPERGRAVITY |
en |
dc.title |
On the minimum polynomial of supermatrices |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0305-4470/35/43/313 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0305-4470/35/43/313 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
In this paper, a new selection of factors for the construction of the minimum polynomial of a supermatrix M is proposed, leading to null polynomials of M of lower degree than the degree of the corresponding polynomial obtained by using the method proposed in the work of Urrutia and Morales [I]. The case of (1 + 1) x (1 + 1) supermatrices has been completely discussed. Moreover, the main theorem concerning the construction of the minimum polynomial as a product of factors from the characteristic polynomial in the general case of (m + n) x (m + n) supermatrices is given. Finally, we prove that the minimum polynomial of a supermatrix M, in general, is not unique. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Journal of Physics A: Mathematical and General |
en |
dc.identifier.doi |
10.1088/0305-4470/35/43/313 |
en |
dc.identifier.isi |
ISI:000179395900013 |
en |
dc.identifier.volume |
35 |
en |
dc.identifier.issue |
43 |
en |
dc.identifier.spage |
9183 |
en |
dc.identifier.epage |
9197 |
en |