dc.contributor.author |
Psarrakos, PJ |
en |
dc.date.accessioned |
2014-03-01T01:18:09Z |
|
dc.date.available |
2014-03-01T01:18:09Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
10813810 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14829 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-3042662971&partnerID=40&md5=87245532e8b98298e9f9faf6d160a8c2 |
en |
dc.relation.uri |
http://www.mat.ub.edu/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://emis.math.tifr.res.in/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://ftp.gwdg.de/pub/misc/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://ftp.gwdg.de/pub/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://emis.math.ecnu.edu.cn/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://www.math.ethz.ch/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://hermite.cii.fc.ul.pt/iic/ela/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://www.ii.uj.edu.pl/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://celc.cii.fc.ul.pt/iic/ela/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://emis.maths.adelaide.edu.au/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://emis.luc.ac.be/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://emis.dsd.sztaki.hu/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://emis.luc.ac.be/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://siba-sinmemis.unile.it/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://www.univie.ac.at/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://www-sbras.nsc.ru/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://www.emis.de/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://emis.bibl.cwi.nl/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://www.emis.ams.org/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://emis.muni.cz/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://www.math.helsinki.fi/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://emis.kaist.ac.kr/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://emis.maths.tcd.ie/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://emis.math.ca/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://www.math.ntua.gr/~ppsarr/roots.pdf |
en |
dc.relation.uri |
http://emis.library.cornell.edu/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://www.emis.math.ca/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://emis.icm.edu.pl/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://www.kurims.kyoto-u.ac.jp/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://www.cirm.univ-mrs.fr/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://emis.mi.ras.ru/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://emis.u-strasbg.fr/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://emis.matem.unam.mx/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://www.maths.tcd.ie/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.relation.uri |
http://www.mat.ub.es/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf |
en |
dc.subject |
Ascent sequence |
en |
dc.subject |
Eigenvalue |
en |
dc.subject |
Eigenvector |
en |
dc.subject |
Jordan matrix |
en |
dc.subject |
Matrix root |
en |
dc.title |
On the mth roots of a complex matrix |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
If an n x n complex matrix A is nonsingular, then for every integer m > 1, A has an mth root B, i.e., Bm = A. In this paper, we present a new simple proof for the Jordan canonical form of the root B. Moreover, a necessary and sufficient condition for the existence of mth roots of a singular complex matrix A is obtained. This condition is in terms of the dimensions of the null spaces of the powers Ak (k = 0, 1, 2, . . .). |
en |
heal.journalName |
Electronic Journal of Linear Algebra |
en |
dc.identifier.volume |
9 |
en |
dc.identifier.spage |
32 |
en |
dc.identifier.epage |
41 |
en |