HEAL DSpace

On the mth roots of a complex matrix

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Psarrakos, PJ en
dc.date.accessioned 2014-03-01T01:18:09Z
dc.date.available 2014-03-01T01:18:09Z
dc.date.issued 2002 en
dc.identifier.issn 10813810 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14829
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-3042662971&partnerID=40&md5=87245532e8b98298e9f9faf6d160a8c2 en
dc.relation.uri http://www.mat.ub.edu/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://emis.math.tifr.res.in/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://ftp.gwdg.de/pub/misc/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://ftp.gwdg.de/pub/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://emis.math.ecnu.edu.cn/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://www.math.ethz.ch/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://hermite.cii.fc.ul.pt/iic/ela/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://www.ii.uj.edu.pl/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://celc.cii.fc.ul.pt/iic/ela/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://emis.maths.adelaide.edu.au/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://emis.luc.ac.be/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://emis.dsd.sztaki.hu/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://emis.luc.ac.be/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://siba-sinmemis.unile.it/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://www.univie.ac.at/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://www-sbras.nsc.ru/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://www.emis.de/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://emis.bibl.cwi.nl/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://www.emis.ams.org/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://emis.muni.cz/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://www.math.helsinki.fi/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://emis.kaist.ac.kr/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://emis.maths.tcd.ie/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://emis.math.ca/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://www.math.ntua.gr/~ppsarr/roots.pdf en
dc.relation.uri http://emis.library.cornell.edu/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://www.emis.math.ca/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://emis.icm.edu.pl/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://www.kurims.kyoto-u.ac.jp/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://www.cirm.univ-mrs.fr/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://emis.mi.ras.ru/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://emis.u-strasbg.fr/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://emis.matem.unam.mx/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://www.maths.tcd.ie/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.relation.uri http://www.mat.ub.es/EMIS/journals/ELA/ela-articles/articles/vol9_pp32-41.pdf en
dc.subject Ascent sequence en
dc.subject Eigenvalue en
dc.subject Eigenvector en
dc.subject Jordan matrix en
dc.subject Matrix root en
dc.title On the mth roots of a complex matrix en
heal.type journalArticle en
heal.publicationDate 2002 en
heal.abstract If an n x n complex matrix A is nonsingular, then for every integer m > 1, A has an mth root B, i.e., Bm = A. In this paper, we present a new simple proof for the Jordan canonical form of the root B. Moreover, a necessary and sufficient condition for the existence of mth roots of a singular complex matrix A is obtained. This condition is in terms of the dimensions of the null spaces of the powers Ak (k = 0, 1, 2, . . .). en
heal.journalName Electronic Journal of Linear Algebra en
dc.identifier.volume 9 en
dc.identifier.spage 32 en
dc.identifier.epage 41 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής