dc.contributor.author |
Psarrakos, PJ |
en |
dc.contributor.author |
Tsatsomeros, MJ |
en |
dc.date.accessioned |
2014-03-01T01:18:10Z |
|
dc.date.available |
2014-03-01T01:18:10Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0308-1087 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14834 |
|
dc.subject |
Matrix polynomial |
en |
dc.subject |
Numerical range |
en |
dc.subject |
Pseudospectrum |
en |
dc.subject |
Stability radius |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
NUMERICAL RANGE |
en |
dc.subject.other |
DISTANCE |
en |
dc.title |
On the stability radius of matrix polynomials |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/03081080290019577 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/03081080290019577 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
The stability radius of a matrix polynomial P(lambda) relative to an open region Omega of the complex plane and its relation to the numerical range of P(lambda) are investigated. Using an expression of the stability radius in terms of lambda on the boundary of Omega and \\P(lambda)(-1)\\(2), a lower bound is obtained. This bound for the stability radius involves the distances of Omega to the connected components of the numerical range of P(lambda) and can be applied in conjunction with polygonal approximations of the numerical range. The special case of hyperbolic matrix polynomials is also considered. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
Linear and Multilinear Algebra |
en |
dc.identifier.doi |
10.1080/03081080290019577 |
en |
dc.identifier.isi |
ISI:000174911500007 |
en |
dc.identifier.volume |
50 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
151 |
en |
dc.identifier.epage |
165 |
en |