HEAL DSpace

Optimal sequences of continuous functions converging to a Baire-1 function

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Argyros, SA en
dc.contributor.author Kanellopoulos, V en
dc.date.accessioned 2014-03-01T01:18:10Z
dc.date.available 2014-03-01T01:18:10Z
dc.date.issued 2002 en
dc.identifier.issn 0025-5831 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14841
dc.subject Indexation en
dc.subject.classification Mathematics en
dc.subject.other BANACH-SPACES en
dc.title Optimal sequences of continuous functions converging to a Baire-1 function en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00208-002-0354-0 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00208-002-0354-0 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract A proof of Rosenthal's c(o)-index conjecture is given. Our approach uses optimal sequences of continuous functions converging to a Baire-1 function. Their existence is obtained by the "optimal sequences theorem" stated and proved here. For a sequence (g) over bar=(g(n))(n) of functions and xi a countable ordinal, the xi(th)-variation v(xi)((g) over bar) is also introduced. If (g) over bar pointwise converges to f the relation between v(xi)((g) over bar) and parallel toosc(xi) fparallel to(infinity) is completely clarified. Finally, optimal sequences associated to a Baire-1 function are defined and their existence for every Baire-1 function is provided. en
heal.publisher SPRINGER-VERLAG en
heal.journalName Mathematische Annalen en
dc.identifier.doi 10.1007/s00208-002-0354-0 en
dc.identifier.isi ISI:000179972200003 en
dc.identifier.volume 324 en
dc.identifier.issue 4 en
dc.identifier.spage 689 en
dc.identifier.epage 729 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record