dc.contributor.author |
Argyros, SA |
en |
dc.contributor.author |
Kanellopoulos, V |
en |
dc.date.accessioned |
2014-03-01T01:18:10Z |
|
dc.date.available |
2014-03-01T01:18:10Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0025-5831 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14841 |
|
dc.subject |
Indexation |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BANACH-SPACES |
en |
dc.title |
Optimal sequences of continuous functions converging to a Baire-1 function |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00208-002-0354-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00208-002-0354-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
A proof of Rosenthal's c(o)-index conjecture is given. Our approach uses optimal sequences of continuous functions converging to a Baire-1 function. Their existence is obtained by the "optimal sequences theorem" stated and proved here. For a sequence (g) over bar=(g(n))(n) of functions and xi a countable ordinal, the xi(th)-variation v(xi)((g) over bar) is also introduced. If (g) over bar pointwise converges to f the relation between v(xi)((g) over bar) and parallel toosc(xi) fparallel to(infinity) is completely clarified. Finally, optimal sequences associated to a Baire-1 function are defined and their existence for every Baire-1 function is provided. |
en |
heal.publisher |
SPRINGER-VERLAG |
en |
heal.journalName |
Mathematische Annalen |
en |
dc.identifier.doi |
10.1007/s00208-002-0354-0 |
en |
dc.identifier.isi |
ISI:000179972200003 |
en |
dc.identifier.volume |
324 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
689 |
en |
dc.identifier.epage |
729 |
en |