dc.contributor.author |
Troupis, A |
en |
dc.contributor.author |
Hiskia, A |
en |
dc.contributor.author |
Papaconstantinou, E |
en |
dc.date.accessioned |
2014-03-01T01:18:12Z |
|
dc.date.available |
2014-03-01T01:18:12Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0013-936X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14863 |
|
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.other |
Catalysts |
en |
dc.subject.other |
Copper |
en |
dc.subject.other |
Light absorption |
en |
dc.subject.other |
Oxidation |
en |
dc.subject.other |
Precipitation (chemical) |
en |
dc.subject.other |
Reducing agent |
en |
dc.subject.other |
Photocatalysis |
en |
dc.subject.other |
chloride ion |
en |
dc.subject.other |
copper |
en |
dc.subject.other |
metal derivative |
en |
dc.subject.other |
acetic acid derivative |
en |
dc.subject.other |
chlorate |
en |
dc.subject.other |
chloride |
en |
dc.subject.other |
nitrate |
en |
dc.subject.other |
polymer |
en |
dc.subject.other |
silicon derivative |
en |
dc.subject.other |
tungsten derivative |
en |
dc.subject.other |
photochemistry |
en |
dc.subject.other |
article |
en |
dc.subject.other |
catalysis |
en |
dc.subject.other |
concentration (parameters) |
en |
dc.subject.other |
light absorption |
en |
dc.subject.other |
molecular stability |
en |
dc.subject.other |
oxidation |
en |
dc.subject.other |
particulate matter |
en |
dc.subject.other |
pH |
en |
dc.subject.other |
pollution |
en |
dc.subject.other |
reaction analysis |
en |
dc.subject.other |
reduction |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
chemical model |
en |
dc.subject.other |
chemistry |
en |
dc.subject.other |
light |
en |
dc.subject.other |
oxidation reduction reaction |
en |
dc.subject.other |
radiation exposure |
en |
dc.subject.other |
Acetates |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Chlorates |
en |
dc.subject.other |
Chlorides |
en |
dc.subject.other |
Copper |
en |
dc.subject.other |
Hydrogen-Ion Concentration |
en |
dc.subject.other |
Light |
en |
dc.subject.other |
Models, Chemical |
en |
dc.subject.other |
Nitrates |
en |
dc.subject.other |
Oxidation-Reduction |
en |
dc.subject.other |
Polymers |
en |
dc.subject.other |
Silicon Compounds |
en |
dc.subject.other |
Tungsten Compounds |
en |
dc.title |
Photocatalytic reduction and recovery of copper by polyoxomelalates |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1021/es020933q |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1021/es020933q |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
A series of polyoxometalates PW12O403-, SiW12O404-, and P2Mo18O626- have been used as photocatalysts for recovery, of copper and production of fine metal particles. The process involves absorption of light by polyoxometalates, oxidation of an organic substrate, for instance, propan-2-ol as sacrificial reducing reagent, and reoxidation of the reduced polyoxometalates by Cu2+ ions, closing the photocatalytic cycle. Copper(II) ions are reduced to copper-(I) and finally to zero-state particles in a 2-electron process, as also suggested by the half-order dependence. Increase of catalyst or propan-2-ol concentration, or both, accelerates the photodeposition of copper until a saturation value is reached. The method is operational at a wide range of copper concentrations varying from 3 to 1300 ppm, leading to very low final concentrations (<0.2 ppm). The presence of dioxygen suppresses the initiation of copper recovery, though the process is equally effective after dioxygen is consumed. The process is independent of pH within the range 0.3-5.0. Addition of ClO4-, NO3-, or CH3COO- has no effect on the removal of copper ions. Chloride ions retard the enhancement of copper precipitation through stabilization of copper(I). This homogeneous, polyoxometalate-based process exhibits some benefits in comparison with the semiconductor-based (heterogeneous) recovery of metals: The final zero-state metal particles are obtained in pure form. No separation from the catalyst is needed, and moreover, the process is catalytic as the photodeposited metal particulates do not hinder the photocatalytic action of polyoxometalate anions. |
en |
heal.publisher |
AMER CHEMICAL SOC |
en |
heal.journalName |
Environmental Science and Technology |
en |
dc.identifier.doi |
10.1021/es020933q |
en |
dc.identifier.isi |
ISI:000179833400011 |
en |
dc.identifier.volume |
36 |
en |
dc.identifier.issue |
24 |
en |
dc.identifier.spage |
5355 |
en |
dc.identifier.epage |
5362 |
en |