dc.contributor.author |
Chien, MT |
en |
dc.contributor.author |
Nakazato, H |
en |
dc.contributor.author |
Psarrakos, P |
en |
dc.date.accessioned |
2014-03-01T01:18:13Z |
|
dc.date.available |
2014-03-01T01:18:13Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0024-3795 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14871 |
|
dc.subject |
matrix polynomial |
en |
dc.subject |
numerical range |
en |
dc.subject |
boundary |
en |
dc.subject |
discriminant |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.title |
Point equation of the boundary of the numerical range of a matrix polynomial |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0024-3795(01)00549-3 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0024-3795(01)00549-3 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
The numerical range of an n x n matrix polynomial P(lambda) = A(m)lambda(m) + A(m-1)lambda(m-1) + .... + A(1)lambda + A(0) is defined by W(P) = {lambda is an element of C : x * P (lambda)x = 0, x is an element of C-n, x not equal 0}. For the linear pencil P(lambda) = Ilambda - A, the range W(P) coincides with the numerical range of matrix A, F(A) = {x*Ax: x is an element of C-n, x*x = 1}. In this paper, we obtain necessary conditions for the origin to be a boundary point of F(A). As a consequence, an algebraic curve of degree at most 2n(n - 1)m, which contains the boundary of W(P), is constructed. (C) 2002 Elsevier Science Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
LINEAR ALGEBRA AND ITS APPLICATIONS |
en |
dc.identifier.doi |
10.1016/S0024-3795(01)00549-3 |
en |
dc.identifier.isi |
ISI:000175670100013 |
en |
dc.identifier.volume |
347 |
en |
dc.identifier.spage |
205 |
en |
dc.identifier.epage |
217 |
en |