HEAL DSpace

Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Benardos, PG en
dc.contributor.author Vosniakos, GC en
dc.date.accessioned 2014-03-01T01:18:14Z
dc.date.available 2014-03-01T01:18:14Z
dc.date.issued 2002 en
dc.identifier.issn 0736-5845 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14882
dc.subject Design of experiments en
dc.subject Face milling en
dc.subject Neural networks en
dc.subject Surface roughness en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Manufacturing en
dc.subject.classification Robotics en
dc.subject.other Cutting tools en
dc.subject.other Neural networks en
dc.subject.other Surface roughness en
dc.subject.other Wear of materials en
dc.subject.other Face milling en
dc.subject.other Milling (machining) en
dc.title Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0736-5845(02)00005-4 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0736-5845(02)00005-4 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract In this paper, a neural network modeling approach is presented for the prediction of surface roughness (R-a) in CNC face milling. The data used for the training and checking of the networks' performance derived from experiments conducted on a CNC milling machine according to the principles of Taguchi design of experiments (DoE) method. The factors considered in the experiment were the depth of cut, the feed rate per tooth, the cutting speed, the engagement and wear of the cutting tool, the use of cutting fluid and the three components of the cutting force. Using feedforward artificial neural networks (ANNs) trained with the Levenberg-Marquardt algorithm, the most influential of the factors were determined, again using DoE principles, and a 5 x 3 x 1 ANN based on them was able to predict the surface roughness with a mean squared error equal to 1.86% and to be consistent throughout the entire range of values. (C) 2002 Elsevier Science Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Robotics and Computer-Integrated Manufacturing en
dc.identifier.doi 10.1016/S0736-5845(02)00005-4 en
dc.identifier.isi ISI:000179721700002 en
dc.identifier.volume 18 en
dc.identifier.issue 5-6 en
dc.identifier.spage 343 en
dc.identifier.epage 354 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής