HEAL DSpace

Probabilistic description of metocean parameters by means of kernel density models 1. Theoretical background and first results

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Athanassoulis, GA en
dc.contributor.author Belibassakis, KA en
dc.date.accessioned 2014-03-01T01:18:15Z
dc.date.available 2014-03-01T01:18:15Z
dc.date.issued 2002 en
dc.identifier.issn 0141-1187 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14891
dc.subject Kernel density model en
dc.subject Metocean parameters en
dc.subject Multivariate probability distribution en
dc.subject.classification Engineering, Ocean en
dc.subject.classification Oceanography en
dc.subject.other Bandwidth en
dc.subject.other Costs en
dc.subject.other Estimation en
dc.subject.other Parameter estimation en
dc.subject.other Probability density function en
dc.subject.other Metocean parameters en
dc.subject.other Probability distributions en
dc.subject.other multivariate analysis en
dc.subject.other numerical method en
dc.subject.other oceanography en
dc.title Probabilistic description of metocean parameters by means of kernel density models 1. Theoretical background and first results en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0141-1187(02)00009-3 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0141-1187(02)00009-3 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract In the present work, a general kernel density model (KDM) has been introduced and assessed for the analytic representation of any empirical distribution function (univariate or multivariate) of metocean parameters. This model is based on the concept of kernel density function, which has been first introduced in the context of non-parametric discriminant analysis by Fix and Hodges [Nonparametric discrimination: consistency properties, 195 11, and generalised to the multivariate case by Cacoulos [Ann Inst Math 18 (1966) 178]. In its standard form, the kernel density estimators are applied to given samples of observations, producing analytical (yet non-parametric) estimations of the unknown (underlying) probability density functions. Motivated by the fact that, in many practical applications, metocean data are available only in the form of histograms (grouped data), the present KDM is implemented in a way permitting to obtain analytical estimates of the underlying probability distributions on the basis of grouped data. The main features of the proposed KDM are: (i) it can treat multivariate data with very reasonable computational cost, (ii) it is flexible enough to represent quite general distribution patterns both in the univariate and in the multivariate case, (iii) with an appropriate selection of the bandwidth, results in very satisfactory representations, avoiding local pathologies, (iv) it is marginally consistent, i.e. any marginal distribution calculated by integration front the multivariate model is identical with the corresponding marginal KDM, obtained directly from the marginal data, First numerical results are presented herein, showing that the performance of the present model is very satisfactory for all the wave parameters studied, univariate, bivariate, the trivariate (H-s, T-m, Theta(m)), and conditionals. A more detailed investigation, also including applications to other metocean parameters, will be presented as a second pail. (C) 2002 Elsevier Science Ltd All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Applied Ocean Research en
dc.identifier.doi 10.1016/S0141-1187(02)00009-3 en
dc.identifier.isi ISI:000177856800001 en
dc.identifier.volume 24 en
dc.identifier.issue 1 en
dc.identifier.spage 1 en
dc.identifier.epage 20 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής