dc.contributor.author |
Manousakis, M |
en |
dc.contributor.author |
Droulias, S |
en |
dc.contributor.author |
Papagiannis, P |
en |
dc.contributor.author |
Hizanidis, K |
en |
dc.date.accessioned |
2014-03-01T01:18:15Z |
|
dc.date.available |
2014-03-01T01:18:15Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0030-4018 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14895 |
|
dc.subject |
Dissipative system |
en |
dc.subject |
EDFA |
en |
dc.subject |
Ginzburg-Landau equation |
en |
dc.subject |
Solitary pulse propagation |
en |
dc.subject |
Variational approach |
en |
dc.subject.classification |
Optics |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Light amplifiers |
en |
dc.subject.other |
Light propagation |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Optical transmission lines |
en |
dc.subject.other |
Optical communication |
en |
dc.title |
Propagation of chirped solitary pulses in optical transmission lines: Perturbed variational approach |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0030-4018(02)02086-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0030-4018(02)02086-2 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
The evolution of a dressed solitary pulse subjected to filtered amplification is examined. The model equation used is complex cubic Ginzburg-Landau equation (CCGLE). A system of ordinary differential equations is derived on the basis of an extended-perturbed variational method. These equations are solved numerically for a set of initial conditions in the vicinity of the fixed point (corresponding to the exact solution of CCGLE) of the dissipative system these equations model. The stability and degree of stationarity (in propagation distance) of pulses with initial (launching) parameters falling in the vicinity of the fixed point are examined in the context of this method. A fully numerical simulation of the CCGLE finally tests the results of this investigation. Detailed comparisons reveal a wide class of initial pulse profiles, which are characterized by adequate stationarity and long propagation, distances before they disintegrate. In the anomalous dispersion regime there is an adequate quantitative agreement while in the normal dispersion regime the predictability of the method is impressive. Limitations of the proposed method are also discussed. (C) 2002 Elsevier Science B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Optics Communications |
en |
dc.identifier.doi |
10.1016/S0030-4018(02)02086-2 |
en |
dc.identifier.isi |
ISI:000179523400013 |
en |
dc.identifier.volume |
213 |
en |
dc.identifier.issue |
4-6 |
en |
dc.identifier.spage |
293 |
en |
dc.identifier.epage |
299 |
en |