HEAL DSpace

Quantitative representation of mountain objects extracted from the global digital model (GTOPO30)

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Miliaresis, GCh en
dc.contributor.author Argialas, DP en
dc.date.accessioned 2014-03-01T01:18:16Z
dc.date.available 2014-03-01T01:18:16Z
dc.date.issued 2002 en
dc.identifier.issn 0143-1161 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14906
dc.subject Digital Elevation Model en
dc.subject Object Extraction en
dc.subject.classification Remote Sensing en
dc.subject.classification Imaging Science & Photographic Technology en
dc.subject.other Algorithms en
dc.subject.other Catchments en
dc.subject.other Geomorphology en
dc.subject.other Maps en
dc.subject.other Global digital elevation models en
dc.subject.other Remote sensing en
dc.subject.other classification en
dc.subject.other digital elevation model en
dc.subject.other image analysis en
dc.subject.other mountain region en
dc.subject.other United States en
dc.title Quantitative representation of mountain objects extracted from the global digital model (GTOPO30) en
heal.type journalArticle en
heal.identifier.primary 10.1080/01431160110070690 en
heal.identifier.secondary http://dx.doi.org/10.1080/01431160110070690 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract A methodology was developed previously by the authors for the segmentation of the Global Digital Elevation Model (GTOPO30) to three terrain classes (mountains, basins and pieidmont slopes) and it was applied to the Great Basin Section (south-west USA). In the present research effort, mountain objects were identified through a connected component-labelling algorithm applied on the mountain terrain class. Taking into account the physical and perceptual attributes of the Great Basin mountain features, 12 morphometric attributes were defined for the mountain objects and were used as descriptors in their parametric representation. Finally, classification of mountain objects through the implementation of a K-means clustering algorithm resulted in four clusters of mountain objects that appeared to be spatially arranged to distinct geographic regions. The results were compared with existing maps and they were found to be in accordance with existing physiographic descriptions. It is concluded that the derived parametric representation of mountain objects carried sufficient physiographic information and it can be used for mountain classification. The conclusions point out the physiographic information content of GTOPO30 and its value and applications to regional geology and space geomorphology. en
heal.publisher TAYLOR & FRANCIS LTD en
heal.journalName International Journal of Remote Sensing en
dc.identifier.doi 10.1080/01431160110070690 en
dc.identifier.isi ISI:000174122400009 en
dc.identifier.volume 23 en
dc.identifier.issue 5 en
dc.identifier.spage 949 en
dc.identifier.epage 964 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής