HEAL DSpace

Reinforcement learning for rule extraction from a labeled dataset

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vogiatzis, D en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T01:18:17Z
dc.date.available 2014-03-01T01:18:17Z
dc.date.issued 2002 en
dc.identifier.issn 13890417 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14920
dc.subject Reinforcement learning en
dc.subject Rule extraction en
dc.subject.other algorithm en
dc.subject.other analytical error en
dc.subject.other article en
dc.subject.other artificial neural network en
dc.subject.other calculation en
dc.subject.other classification en
dc.subject.other controlled study en
dc.subject.other data analysis en
dc.subject.other diabetes mellitus en
dc.subject.other intermethod comparison en
dc.subject.other learning en
dc.subject.other normal distribution en
dc.subject.other principal component analysis en
dc.subject.other priority journal en
dc.subject.other probability en
dc.subject.other reinforcement en
dc.subject.other symbolism en
dc.subject.other validation process en
dc.title Reinforcement learning for rule extraction from a labeled dataset en
heal.type journalArticle en
heal.identifier.primary 10.1016/S1389-0417(01)00060-2 en
heal.identifier.secondary http://dx.doi.org/10.1016/S1389-0417(01)00060-2 en
heal.publicationDate 2002 en
heal.abstract The article introduces a method, which is based on reinforcement learning, for extracting rules of the form if-then-else from a labeled data-set. The constituent parts of a rule are the input dimensions of the labeled data-set, each accompanied by an appropriate interval of activation, and a label which stands for class membership. Initially, the input space is partitioned using tiles. The algorithm tries to compose the largest possible orthogonal intervals out of tiles. After the creation of intervals for each dimension the rule receives credit for its classification ability. This credit with the aid of reinforcement will be used to improve its constituent parts. The effectiveness of the proposed method has been tested on five different classification problems: the Iris data set, the Concentric data, the 4 Gaussians, the Pima-Indians set and the Image Segmentation data set. © 2004 Elsevier Science B.V. All rights reserved. en
heal.journalName Cognitive Systems Research en
dc.identifier.doi 10.1016/S1389-0417(01)00060-2 en
dc.identifier.volume 3 en
dc.identifier.issue 2 en
dc.identifier.spage 237 en
dc.identifier.epage 253 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής