HEAL DSpace

Reliability-based structural optimization using neural networks and Monte Carlo simulation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadrakakis, M en
dc.contributor.author Lagaros, ND en
dc.date.accessioned 2014-03-01T01:18:17Z
dc.date.available 2014-03-01T01:18:17Z
dc.date.issued 2002 en
dc.identifier.issn 0045-7825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14922
dc.subject Evolution strategies en
dc.subject Monte Carlo simulation en
dc.subject Neural networks en
dc.subject Parallel computations en
dc.subject Reliability analysis en
dc.subject Structural optimization en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Approximation theory en
dc.subject.other Computer simulation en
dc.subject.other Constraint theory en
dc.subject.other Elastoplasticity en
dc.subject.other Large scale systems en
dc.subject.other Monte Carlo methods en
dc.subject.other Neural networks en
dc.subject.other Plastics en
dc.subject.other Probability en
dc.subject.other Reliability en
dc.subject.other Large-scale structural systems en
dc.subject.other Structural optimization en
dc.subject.other Monte Carlo simulation en
dc.subject.other neural network en
dc.subject.other structural analysis en
dc.title Reliability-based structural optimization using neural networks and Monte Carlo simulation en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0045-7825(02)00287-6 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0045-7825(02)00287-6 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract This paper examines the application of neural networks (NN) to reliability-based structural optimization of large-scale structural systems. The failure of the structural system is associated with the plastic collapse, The optimization part is performed with evolution strategies, while the reliability analysis is carried out with the Monte Carlo simulation (MCS) method incorporating the importance sampling technique for the reduction of the sample size. In this study two methodologies are examined. In the first one an NN is trained to perform both the deterministic and probabilistic constraints check. In the second one only the clasto-plastic analysis phase, required by the MCS, is replaced by a neural network prediction of the structural behaviour up to collapse. The use of NN is motivated by the approximate concepts inherent in reliability analysis and the time consuming repeated analyses required by MCS. (C) 2002 Elsevier Science B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE SA en
heal.journalName Computer Methods in Applied Mechanics and Engineering en
dc.identifier.doi 10.1016/S0045-7825(02)00287-6 en
dc.identifier.isi ISI:000176628700004 en
dc.identifier.volume 191 en
dc.identifier.issue 32 en
dc.identifier.spage 3491 en
dc.identifier.epage 3507 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής