dc.contributor.author |
Lancaster, P |
en |
dc.contributor.author |
Markus, AS |
en |
dc.contributor.author |
Psarrakos, P |
en |
dc.date.accessioned |
2014-03-01T01:18:17Z |
|
dc.date.available |
2014-03-01T01:18:17Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0378-620X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14923 |
|
dc.subject |
Eigenvalues |
en |
dc.subject |
Eigenvectors |
en |
dc.subject |
Hilbert Space |
en |
dc.subject |
Numerical Range |
en |
dc.subject |
Satisfiability |
en |
dc.subject.classification |
Mathematics |
en |
dc.title |
Repeated eigenvectors and the numerical range of self-adjoint quadratic operator polynomials |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01217534 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01217534 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
Let L(lambda) be a self-adjoint quadratic operator polynomial on a Hilbert space with numerical range W(L). The main concern of this paper is with properties of eigenvalues on partial derivativeW(L). The investigation requires a careful discussion of repeated eigenvectors of more general operator polynomials. It is shown that, in the self-adjoint quadratic case, non-real eigenvalues on partial derivativeW(L) are semisimple and (in a sense to be defined) they are normal. Also, for any eigenvalue at a point on partial derivativeW(L) where an external cone property is satisfied, the partial multiplicities cannot exceed two. |
en |
heal.publisher |
BIRKHAUSER VERLAG AG |
en |
heal.journalName |
Integral Equations and Operator Theory |
en |
dc.identifier.doi |
10.1007/BF01217534 |
en |
dc.identifier.isi |
ISI:000178246800006 |
en |
dc.identifier.volume |
44 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
243 |
en |
dc.identifier.epage |
253 |
en |