dc.contributor.author |
Tzafestas, CS |
en |
dc.contributor.author |
Maragos, P |
en |
dc.date.accessioned |
2014-03-01T01:18:21Z |
|
dc.date.available |
2014-03-01T01:18:21Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0924-9907 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14943 |
|
dc.subject |
Connected operators |
en |
dc.subject |
Connectivity tree |
en |
dc.subject |
Generalized granulometries |
en |
dc.subject |
Hierarchical image representations |
en |
dc.subject |
Mathematical morphology |
en |
dc.subject |
Multiscale connectivity measures |
en |
dc.subject |
Partitions |
en |
dc.subject |
Reconstruction |
en |
dc.subject |
Shape analysis |
en |
dc.subject |
Soilsection image analysis |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Computer vision |
en |
dc.subject.other |
Image reconstruction |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Mathematical morphology |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Object recognition |
en |
dc.subject.other |
Generalized granulometries |
en |
dc.subject.other |
Multiscale analysis |
en |
dc.subject.other |
Multiscale connectivity analysis framework |
en |
dc.subject.other |
Theoretical framework |
en |
dc.subject.other |
Image analysis |
en |
dc.title |
Shape connectivity: Multiscale analysis and application to generalized granulometries |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1023/A:1020629402912 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1023/A:1020629402912 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
This paper develops a multiscale connectivity theory for shapes based on the axiomatic definition of new generalized connectivity measures, which are obtained using morphology-based nonlinear scale-space operators. The concept of connectivity-tree for hierarchical image representation is introduced and used to define generalized connected morphological operators. This theoretical framework is then applied to establish a class of generalized granulometries, implemented at a particular problem concerning soilsection image analysis and evaluation of morphological properties such as size distributions. Comparative results demonstrate the power and versatility of the proposed methodology with respect to the application of typical connected operators (such as reconstruction openings). This multiscale connectivity analysis framework aims at a more reliable evaluation of shape/size information within complex images, with particular applications to generalized granulometries, connected operators, and segmentation. |
en |
heal.publisher |
KLUWER ACADEMIC PUBL |
en |
heal.journalName |
Journal of Mathematical Imaging and Vision |
en |
dc.identifier.doi |
10.1023/A:1020629402912 |
en |
dc.identifier.isi |
ISI:000178650000003 |
en |
dc.identifier.volume |
17 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
109 |
en |
dc.identifier.epage |
129 |
en |