dc.contributor.author |
Patermarakis, G |
en |
dc.contributor.author |
Moussoutzanis, K |
en |
dc.date.accessioned |
2014-03-01T01:18:21Z |
|
dc.date.available |
2014-03-01T01:18:21Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
1432-8488 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14949 |
|
dc.subject |
Field and solid surface catalysis |
en |
dc.subject |
Interface colloidal aluminum sulfate |
en |
dc.subject |
Kinetics mechanism and structure |
en |
dc.subject |
Porous anodic alumina |
en |
dc.subject.classification |
Electrochemistry |
en |
dc.subject.other |
aluminum |
en |
dc.subject.other |
electrolyte |
en |
dc.subject.other |
oxide |
en |
dc.subject.other |
sulfate |
en |
dc.subject.other |
sulfuric acid |
en |
dc.subject.other |
article |
en |
dc.subject.other |
catalysis |
en |
dc.subject.other |
chemical modification |
en |
dc.subject.other |
chemical reaction kinetics |
en |
dc.subject.other |
chemical structure |
en |
dc.subject.other |
colloid |
en |
dc.subject.other |
density |
en |
dc.subject.other |
electrochemical analysis |
en |
dc.subject.other |
porosity |
en |
dc.subject.other |
potentiometry |
en |
dc.subject.other |
solid state |
en |
dc.subject.other |
theory |
en |
dc.subject.other |
thermodynamics |
en |
dc.title |
Solid surface and field catalysed interface formation of colloidal Al2(SO4)3 during Al anodizing affecting the kinetics and mechanism of development and structure of porous oxides |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10008-001-0253-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10008-001-0253-4 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
Overall kinetic and potentiometric studies of the growth of porous anodic alumina films in saturated H2SO4 + Al-2(SO4)(3) electrolyte showed non-saturation conditions inside the pores and supersaturation conditions at the pore surface/electrolyte interface where the field and the solid surface catalyse the formation of colloidal Al-2(SO4)(3) micelles. Suitable high-strength field thermodynamically sustained electrochemical and chemical kinetic equations were formulated. It was shown that the diameter and surface fraction of charge exchange at the pore bases, the real pore wall surface fraction where oxide dissolution occurs, and its rate are strongly affected by the conditions. The mechanism of growth and structure of the films are quite different from those in H2SO4. A mechanism of regular film growth is imposed and the critical current density, above which pitting appears, strongly increases. The formulated theory may predict improved or new Al anodizing technologies. |
en |
heal.publisher |
SPRINGER-VERLAG |
en |
heal.journalName |
Journal of Solid State Electrochemistry |
en |
dc.identifier.doi |
10.1007/s10008-001-0253-4 |
en |
dc.identifier.isi |
ISI:000178151600006 |
en |
dc.identifier.volume |
6 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
475 |
en |
dc.identifier.epage |
484 |
en |