dc.contributor.author |
Wang, Z-L |
en |
dc.contributor.author |
Dafalias, YF |
en |
dc.contributor.author |
Li, X-S |
en |
dc.contributor.author |
Makdisi, FI |
en |
dc.date.accessioned |
2014-03-01T01:18:22Z |
|
dc.date.available |
2014-03-01T01:18:22Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
1090-0241 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14955 |
|
dc.subject |
Bounding surface |
en |
dc.subject |
Dilatancy |
en |
dc.subject |
Plasticity |
en |
dc.subject |
Pressure |
en |
dc.subject |
Sand |
en |
dc.subject |
Strain softening |
en |
dc.subject.classification |
Engineering, Geological |
en |
dc.subject.classification |
Geosciences, Multidisciplinary |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Geotechnical engineering |
en |
dc.subject.other |
Soil mechanics |
en |
dc.subject.other |
Strain hardening |
en |
dc.subject.other |
Dilatancy |
en |
dc.subject.other |
Sand |
en |
dc.subject.other |
critical state |
en |
dc.subject.other |
plasticity |
en |
dc.subject.other |
pressure |
en |
dc.subject.other |
sand |
en |
dc.subject.other |
softening |
en |
dc.subject.other |
soil mechanics |
en |
dc.subject.other |
strain |
en |
dc.subject.other |
void ratio |
en |
dc.title |
State pressure index for modeling sand behavior |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1061/(ASCE)1090-0241(2002)128:6(511) |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1061/(ASCE)1090-0241(2002)128:6(511) |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
The effort to model sand behavior within the framework of critical-state soil mechanics would benefit from a state variable that relates the current void ratio and mean pressure of the soil to its void ratio and mean pressure at the critical state. In this paper we propose a state pressure index, I-p, which is defined as the ratio of the current mean pressure to the mean pressure at the critical state that corresponds to the current void ratio. Using this state pressure index, a bounding surface hypoplasticity model for sand is modified so that the phase transformation and failure stress ratios both depend on I-p and merge into the critical-state stress ratio at failure. The I-p dependency introduced enables use of a single set of model constants in modeling sand behavior for various initial confining pressures and densities under both undrained and drained conditions. Dilatancy, strain softening, and strain hardening are simulated for both loose and dense sands. Simulations from the modified model are compared with results of laboratory tests of drained and undrained triaxial compression. |
en |
heal.publisher |
ASCE-AMER SOC CIVIL ENGINEERS |
en |
heal.journalName |
Journal of Geotechnical and Geoenvironmental Engineering |
en |
dc.identifier.doi |
10.1061/(ASCE)1090-0241(2002)128:6(511) |
en |
dc.identifier.isi |
ISI:000175722400007 |
en |
dc.identifier.volume |
128 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
511 |
en |
dc.identifier.epage |
519 |
en |