dc.contributor.author |
Argyris, J |
en |
dc.contributor.author |
Papadrakakis, M |
en |
dc.contributor.author |
Stefanou, G |
en |
dc.date.accessioned |
2014-03-01T01:18:22Z |
|
dc.date.available |
2014-03-01T01:18:22Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
00457825 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14958 |
|
dc.subject |
Local average method |
en |
dc.subject |
Shell finite element |
en |
dc.subject |
Spectral representation |
en |
dc.subject |
Stochastic analysis |
en |
dc.subject |
Weighted integral method |
en |
dc.subject.other |
Cost effectiveness |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Stiffness |
en |
dc.subject.other |
Stochastic programming |
en |
dc.subject.other |
Spectral density |
en |
dc.subject.other |
Shells (structures) |
en |
dc.subject.other |
shell |
en |
dc.title |
Stochastic finite element analysis of shells |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0045-7825(02)00404-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0045-7825(02)00404-8 |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
In the present paper the stochastic formulation of the triangular composite (TRIC) facet shell element is presented using the weighted integral and local average methods. The elastic modulus of the structure is considered to be a two-dimensional homogeneous stochastic field which is represented via the spectral representation method. As a result of the proposed derivation and the special features of the element, the stochastic stiffness matrix is calculated in terms of a minimum number of random variables of the stochastic field giving a cost-effective stochastic matrix. Under the assumption of a pre-specified power spectral density function of the stochastic field, it is possible to compute the response variability of the shell structure. Numerical tests are provided to demonstrate the applicability of the proposed methodologies. © 2002 Elsevier Science B.V. All rights reserved. |
en |
heal.journalName |
Computer Methods in Applied Mechanics and Engineering |
en |
dc.identifier.doi |
10.1016/S0045-7825(02)00404-8 |
en |
dc.identifier.volume |
191 |
en |
dc.identifier.issue |
41-42 |
en |
dc.identifier.spage |
4781 |
en |
dc.identifier.epage |
4804 |
en |