HEAL DSpace

The Hamiltonian perturbation approach of two interacting nonlinear waves or solitary pulses in an optical coupler

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kominis, Y en
dc.contributor.author Hizanidis, K en
dc.date.accessioned 2014-03-01T01:18:25Z
dc.date.available 2014-03-01T01:18:25Z
dc.date.issued 2002 en
dc.identifier.issn 0167-2789 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14995
dc.subject homoclinic orbit en
dc.subject Nonlinear Waves en
dc.subject Optical Fiber en
dc.subject Parametric Resonance en
dc.subject Perturbation Theory en
dc.subject Phase Space en
dc.subject Traveling Wave Solution en
dc.subject Wave Propagation en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Physics, Multidisciplinary en
dc.subject.classification Physics, Mathematical en
dc.subject.other Hamiltonians en
dc.subject.other Optical fibers en
dc.subject.other Perturbation techniques en
dc.subject.other Resonance en
dc.subject.other Waveguide couplers en
dc.subject.other Nonlinear waves en
dc.subject.other Solitary pulses en
dc.subject.other Nonlinear equations en
dc.title The Hamiltonian perturbation approach of two interacting nonlinear waves or solitary pulses in an optical coupler en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0167-2789(02)00551-1 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0167-2789(02)00551-1 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract The traveling-wave solutions dynamics of two linearly coupled nonlinear Schrodinger equations, describing the wave propagation in a dual-core optical fiber, is studied in the framework of the Hamiltonian perturbation theory. The surface of section of the phase space for each wave is obtained as a contour plot of an approximate invariant of the system and the phase space distortions due to the interaction are analyzed. Depending on the magnitude of the coupling strength, the parametric resonance involved leads to weak, strong and chaotic interactions. The coupling strength threshold above which the interaction between two nonlinear waves of given amplitude becomes chaotic is also estimated. On the other hand, the interaction of a solitary pulse with a nonlinear periodic wave is studied using the Melnikov method for homoclinic orbits. This interaction causes stochastization of the homoclinic orbit, which corresponds to the solitary pulse and the separatrix splitting as well as the width of the stochastic layer near this orbit is given in terms of the Melnikov function. The latter is applied in the case of two interacting solitary pulses as well. (C) 2002 Elsevier Science B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Physica D: Nonlinear Phenomena en
dc.identifier.doi 10.1016/S0167-2789(02)00551-1 en
dc.identifier.isi ISI:000180130200005 en
dc.identifier.volume 173 en
dc.identifier.issue 3-4 en
dc.identifier.spage 204 en
dc.identifier.epage 225 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής