dc.contributor.author |
Theotokoglou, EN |
en |
dc.contributor.author |
Theotokoglou, EE |
en |
dc.date.accessioned |
2014-03-01T01:18:25Z |
|
dc.date.available |
2014-03-01T01:18:25Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0376-9429 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14996 |
|
dc.subject |
Complex variable method |
en |
dc.subject |
Fracture |
en |
dc.subject |
Inclusion |
en |
dc.subject |
Interface crack |
en |
dc.subject |
Plane-elasticity problem |
en |
dc.subject |
Stress intensity factors |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Computational geometry |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Green's function |
en |
dc.subject.other |
Inclusions |
en |
dc.subject.other |
Interfaces (materials) |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Stress intensity factors |
en |
dc.subject.other |
Stresses |
en |
dc.subject.other |
Circular inclusions |
en |
dc.subject.other |
Holomorphic functions |
en |
dc.subject.other |
Cracks |
en |
dc.subject.other |
crack |
en |
dc.subject.other |
elasticity |
en |
dc.subject.other |
stress intensity factor |
en |
dc.title |
The interface crack along a circular inclusion interacting with a crack in the infinite matrix |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1023/A:1020186628869 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1023/A:1020186628869 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
The plane elasticity problem studied is of a circular inclusion having a circular arc-crack along the interface and a crack of arbitrary shape in an infinite matrix of different material subjected to uniform stresses at infinity. The solution of the problem is given using Muskhelishvili's complex variable method with sectionally holomorphic functions. First, the solution to the (auxiliary) problem of a dislocation (or force) applied at a point in the matrix with the circular inclusion partially bonded is derived fully in its general form by solving the appropriate Rieman-Hilbert problem. It is subsequently used as the Green's function for the initial problem by introducing an unknown density function associated with a distribution of dislocations along the crack in the matrix. The initial problem is then reduced to a singular integral equation (SIE) over the crack in the matrix only. The SIE is solved numerically by appropriate quadratures and the stress intensity factors reported for the arc-cut and a straight crack in the matrix for a range of values of the geometrical parameters. |
en |
heal.publisher |
KLUWER ACADEMIC PUBL |
en |
heal.journalName |
International Journal of Fracture |
en |
dc.identifier.doi |
10.1023/A:1020186628869 |
en |
dc.identifier.isi |
ISI:000178470700001 |
en |
dc.identifier.volume |
116 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
23 |
en |