HEAL DSpace

The linear sampling method for the transmission problem in three-dimensional linear elasticity

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Charalambopoulos, A en
dc.contributor.author Gintides, D en
dc.contributor.author Kiriaki, K en
dc.date.accessioned 2014-03-01T01:18:25Z
dc.date.available 2014-03-01T01:18:25Z
dc.date.issued 2002 en
dc.identifier.issn 0266-5611 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/14997
dc.subject.classification Mathematics, Applied en
dc.subject.classification Physics, Mathematical en
dc.subject.other Adsorption en
dc.subject.other Approximation theory en
dc.subject.other Boundary conditions en
dc.subject.other Elasticity en
dc.subject.other Green's function en
dc.subject.other Inclusions en
dc.subject.other Integrodifferential equations en
dc.subject.other Inverse problems en
dc.subject.other Problem solving en
dc.subject.other Penetrable scatterers en
dc.subject.other Shape reconstructions en
dc.subject.other Electromagnetic wave scattering en
dc.title The linear sampling method for the transmission problem in three-dimensional linear elasticity en
heal.type journalArticle en
heal.identifier.primary 10.1088/0266-5611/18/3/303 en
heal.identifier.secondary http://dx.doi.org/10.1088/0266-5611/18/3/303 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract In this paper the sampling method for the shape reconstruction of a penetrable scatterer in three-dimensional linear elasticity is examined. We formulate the governing differential equations of the problem in dyadic form in order to acquire a symmetric and uniform representation for the underlying elastic fields. The corresponding far-field operator is defined in the appropriate space setting. We establish the interior transmission problem in the weak sense and consider the case where the nonhomogeneous boundary data are generated by a dyadic source point located in the interior domain. Assuming that the inclusion has absorbing behaviour, we prove the existence and uniqueness of the weak solution of the interior transmission problem. In this framework the main theorem for the shape reconstruction for the transmission case is established. As for the cases of the rigid body and the cavity an approximate far-field equation is derived with the known dyadic Green function term with the source point an interior point of the inclusion. The inversion scheme which is proposed is based on the unboundedness for the solution of an equation of the first kind. More precisely, the support of the body can be found by noting that the solution of the integral equation is not bounded as the point of the location of the fundamental solution approaches the boundary of the scatterer from interior points. en
heal.publisher IOP PUBLISHING LTD en
heal.journalName Inverse Problems en
dc.identifier.doi 10.1088/0266-5611/18/3/303 en
dc.identifier.isi ISI:000176750400004 en
dc.identifier.volume 18 en
dc.identifier.issue 3 en
dc.identifier.spage 547 en
dc.identifier.epage 558 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής