dc.contributor.author |
Lancaster, P |
en |
dc.contributor.author |
Psarrakos, P |
en |
dc.date.accessioned |
2014-03-01T01:18:25Z |
|
dc.date.available |
2014-03-01T01:18:25Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0895-4798 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/14999 |
|
dc.subject |
matrix polynomial |
en |
dc.subject |
numerical range |
en |
dc.subject |
eigenvalue |
en |
dc.subject |
boundary |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.title |
The numerical range of self-adjoint quadratic matrix polynomials |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1137/S0895479899364088 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1137/S0895479899364088 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
Matrix polynomials of the form P (lambda) = Ilambda(2) + A(1)lambda + A(0) (where A(0) and A(1) are n x n Hermitian matrices and lambda is a complex variable) arise in many applications. The numerical range of such a polynomial is W(P) = {lambda epsilon C : x*P(lambda)x = 0 for some nonzero x epsilon C-n} and it always contains the spectrum of P(lambda), i. e., the set of zeros of detP(lambda). Properties of the numerical range are developed in detail, taking advantage of the close connection between W ( P) and the classical numerical range (field of values) of the ( general) complex matrix A : = A(0) + iA(1). Eigenvalues and nondifferentiable points on the boundary are examined and a procedure for the numerical determination of W(P) is presented and used for several illustrations. Some extensions of the theory to more general polynomials P(lambda) are also discussed, as well as special cases describing vibrating systems. |
en |
heal.publisher |
SIAM PUBLICATIONS |
en |
heal.journalName |
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS |
en |
dc.identifier.doi |
10.1137/S0895479899364088 |
en |
dc.identifier.isi |
ISI:000174378500002 |
en |
dc.identifier.volume |
23 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
615 |
en |
dc.identifier.epage |
631 |
en |