HEAL DSpace

The truncated Hausdorff moment problem solved by using kernel density functions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Athanassoulis, GA en
dc.contributor.author Gavriliadis, PN en
dc.date.accessioned 2014-03-01T01:18:26Z
dc.date.available 2014-03-01T01:18:26Z
dc.date.issued 2002 en
dc.identifier.issn 0266-8920 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15005
dc.subject Ill-posed problem en
dc.subject Kernel density function en
dc.subject Probability density function en
dc.subject Truncated Hausdorff moment problem en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.classification Statistics & Probability en
dc.subject.other Algorithms en
dc.subject.other Constraint theory en
dc.subject.other Convergence of numerical methods en
dc.subject.other Least squares approximations en
dc.subject.other Probability density function en
dc.subject.other Kernel density functions en
dc.subject.other Problem solving en
dc.title The truncated Hausdorff moment problem solved by using kernel density functions en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0266-8920(02)00012-7 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0266-8920(02)00012-7 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract In this work, the problem of an efficient representation and its exploitation to the approximate determination of a compactly supported, continuous probability density function (pdf) from a finite number of its moments is addressed. The representation used is a finite superposition of kernel density functions. This representation preserves positivity and can approximate any continuous pdf as closely as it is required. The classical theory of the Hausdorff moment problem is reviewed in order to make clear how the theoretical results as, e.g. the moment bounds, can be exploited in the numerical procedure. Various difficulties arising from the well-known ill-posedness of the numerical moment problem have been identified and solved. The kernel coefficients of the pdf expansion are calculated by solving a constrained, non-negative least-square problem. The consistency, numerical convergence and robustness of the solution algorithm have been illustrated by numerical examples with unimodal and bimodal pdfs. Although this paper is restricted to univariate, compactly supported pdfs, the method can be extended to general pdfs either univariate or multivariate, with finite or infinite support. (C) 2002 Published by Elsevier Science Ltd. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Probabilistic Engineering Mechanics en
dc.identifier.doi 10.1016/S0266-8920(02)00012-7 en
dc.identifier.isi ISI:000177177800007 en
dc.identifier.volume 17 en
dc.identifier.issue 3 en
dc.identifier.spage 273 en
dc.identifier.epage 291 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής