dc.contributor.author |
Koutsoumbas, G |
en |
dc.contributor.author |
Savvidy, GK |
en |
dc.date.accessioned |
2014-03-01T01:18:26Z |
|
dc.date.available |
2014-03-01T01:18:26Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0217-7323 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15011 |
|
dc.subject |
Monte-Carlo |
en |
dc.subject |
Spin models |
en |
dc.subject |
Strings |
en |
dc.subject.classification |
Physics, Nuclear |
en |
dc.subject.classification |
Physics, Particles & Fields |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.subject.other |
acceleration |
en |
dc.subject.other |
anisotropy |
en |
dc.subject.other |
article |
en |
dc.subject.other |
calculation |
en |
dc.subject.other |
mathematical model |
en |
dc.subject.other |
molecular interaction |
en |
dc.subject.other |
Monte Carlo method |
en |
dc.subject.other |
phase transition |
en |
dc.subject.other |
quantum mechanics |
en |
dc.subject.other |
system analysis |
en |
dc.subject.other |
three dimensional imaging |
en |
dc.title |
Three-dimensional Gonihedric spin system |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1142/S0217732302006965 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1142/S0217732302006965 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
We perform Monte-Carlo simulations of a three-dimensional spin system with a Hamiltonian which contains only four-spin interaction term. This system describes random surfaces with extrinsic curvature-gonihedric action. We study the anisotropic model when the coupling constants beta(S) for the space-like plaquettes and beta(T) for the transverse-like plaquettes are different. In the two limits beta(T)=0 and beta(T)=0 the system has been solved exactly and the main interest is to see what happens when we move away from these points towards the isotropic point, where we recover the original model. We find that the phase transition is of first order for beta(T)=beta(S) approximate to 0.25, while away from this point it becomes weaker and eventually turns to a crossover. The conclusion which can be drawn from this result is that the exact solution at the point beta(S)=0 in terms of 2D-Ising model should be considered as a good zero-order approximation in the description of the system also at the isotropic point beta(S)=beta(T) and clearly confirms the earlier findings that at the isotropic point the original model shows a first-order phase transition. |
en |
heal.publisher |
WORLD SCIENTIFIC PUBL CO PTE LTD |
en |
heal.journalName |
Modern Physics Letters A |
en |
dc.identifier.doi |
10.1142/S0217732302006965 |
en |
dc.identifier.isi |
ISI:000176018100005 |
en |
dc.identifier.volume |
17 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
751 |
en |
dc.identifier.epage |
761 |
en |