HEAL DSpace

Three-dimensional Gonihedric spin system

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koutsoumbas, G en
dc.contributor.author Savvidy, GK en
dc.date.accessioned 2014-03-01T01:18:26Z
dc.date.available 2014-03-01T01:18:26Z
dc.date.issued 2002 en
dc.identifier.issn 0217-7323 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15011
dc.subject Monte-Carlo en
dc.subject Spin models en
dc.subject Strings en
dc.subject.classification Physics, Nuclear en
dc.subject.classification Physics, Particles & Fields en
dc.subject.classification Physics, Mathematical en
dc.subject.other acceleration en
dc.subject.other anisotropy en
dc.subject.other article en
dc.subject.other calculation en
dc.subject.other mathematical model en
dc.subject.other molecular interaction en
dc.subject.other Monte Carlo method en
dc.subject.other phase transition en
dc.subject.other quantum mechanics en
dc.subject.other system analysis en
dc.subject.other three dimensional imaging en
dc.title Three-dimensional Gonihedric spin system en
heal.type journalArticle en
heal.identifier.primary 10.1142/S0217732302006965 en
heal.identifier.secondary http://dx.doi.org/10.1142/S0217732302006965 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract We perform Monte-Carlo simulations of a three-dimensional spin system with a Hamiltonian which contains only four-spin interaction term. This system describes random surfaces with extrinsic curvature-gonihedric action. We study the anisotropic model when the coupling constants beta(S) for the space-like plaquettes and beta(T) for the transverse-like plaquettes are different. In the two limits beta(T)=0 and beta(T)=0 the system has been solved exactly and the main interest is to see what happens when we move away from these points towards the isotropic point, where we recover the original model. We find that the phase transition is of first order for beta(T)=beta(S) approximate to 0.25, while away from this point it becomes weaker and eventually turns to a crossover. The conclusion which can be drawn from this result is that the exact solution at the point beta(S)=0 in terms of 2D-Ising model should be considered as a good zero-order approximation in the description of the system also at the isotropic point beta(S)=beta(T) and clearly confirms the earlier findings that at the isotropic point the original model shows a first-order phase transition. en
heal.publisher WORLD SCIENTIFIC PUBL CO PTE LTD en
heal.journalName Modern Physics Letters A en
dc.identifier.doi 10.1142/S0217732302006965 en
dc.identifier.isi ISI:000176018100005 en
dc.identifier.volume 17 en
dc.identifier.issue 12 en
dc.identifier.spage 751 en
dc.identifier.epage 761 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής