HEAL DSpace

Time-dependent tunnelling via path integrals. Connection to results of the quantum mechanics of decaying states

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Douvropoulos, TG en
dc.contributor.author Nicolaides, CA en
dc.date.accessioned 2014-03-01T01:18:27Z
dc.date.available 2014-03-01T01:18:27Z
dc.date.issued 2002 en
dc.identifier.issn 0953-4075 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15014
dc.subject.classification Optics en
dc.subject.classification Physics, Atomic, Molecular & Chemical en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Electron tunneling en
dc.subject.other Fourier transforms en
dc.subject.other Green's function en
dc.subject.other Probability en
dc.subject.other Spherical harmonic oscillators (SHO) en
dc.subject.other Quantum theory en
dc.title Time-dependent tunnelling via path integrals. Connection to results of the quantum mechanics of decaying states en
heal.type journalArticle en
heal.identifier.primary 10.1088/0953-4075/35/21/310 en
heal.identifier.secondary http://dx.doi.org/10.1088/0953-4075/35/21/310 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract The probability, P (t), of the irreversible dissipation into a continuous spectrum of an initially (t = 0) localized (Psi(0)) nonstationary state acquires, as time increases, 'memory' due to the lower energy bound of the spectrum, and eventually follows a nonexponential decay (NED). Regardless of the degree of dependence on energy, the magnitude of this deviation from exponential decay depends on the degree of proximity to threshold, and on whether the theory employs a real energy distribution, one form of which is g (E) equivalent to <Psi(0)\delta (H- E) \Psi(0)>, or a complex energy distribution, G (E) equivalent to <Psi(0)\(H - E + i0)\Psi(0)>. It is the latter that is physically consistent, since it originates from the singularity at t = 0, which breaks the S-matrix unitarity, in accordance with the non-Hermitian character of decaying states. In order to test the quantum mechanical theory, we carried out semiclassical path integral calculations of the P(t) for an isolated narrow tunnelling state, whereby the truncated Fourier transform of a semiclassical Green function, G(sc)(E), is obtained. The results are in agreement with the analytic results of quantum mechanics when energy and time asymmetry are taken into account. It is shown that the analytic structure of G(sc) (E) is [D-regular + D-pole ], where D-pole is a finite sum over complex poles, which are the complex eigenvalues, W, that the potential can support. The Delta(n) are given by E-n + Delta(n) - (i/2)Gamma(n), where E-n are the real eigenvalues of the corresponding bound potential, Gamma(n) are the energy widths and Delta(n) are the energy shifts, both expressed in terms of computable semiclassical quantities. The spherical harmonic oscillator (SHO) with and without angular momentum, and unstable ground states of diatomic molecules, are treated as particular cases. The exact spectrum of the SHO is recovered only when the Kramers-Langer semiclassical expression for the centrifugal potential is used, thereby bypassing the difficulty of the singularity at r = 0. The spectrum from the use of the quantal form l (l + 1) reduces to that of l(l + 1/2)(2) in the limit of large l, i.e., for orbits far from r = 0. Using previously computed energies and widths for the vibrational levels of He-2(2+) 1sigma(g)(2 1)Sigma(g)(+), the application of two formulae for P(t), one derived from a Lorentzian real energy distribution and the other from the corresponding complex energy distribution, shows that, for the lowest level, in the former case NED starts after about 193 lifetimes, and in the latter after about 102 lifetimes. The fact that this difference is large should have consequences for the deeper understanding of irreversibility at the quantum level. en
heal.publisher IOP PUBLISHING LTD en
heal.journalName Journal of Physics B: Atomic, Molecular and Optical Physics en
dc.identifier.doi 10.1088/0953-4075/35/21/310 en
dc.identifier.isi ISI:000179437100012 en
dc.identifier.volume 35 en
dc.identifier.issue 21 en
dc.identifier.spage 4453 en
dc.identifier.epage 4473 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής