dc.contributor.author |
Siettos, CI |
en |
dc.contributor.author |
Bafas, GV |
en |
dc.contributor.author |
Boudouvis, AG |
en |
dc.date.accessioned |
2014-03-01T01:18:27Z |
|
dc.date.available |
2014-03-01T01:18:27Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0165-0114 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15020 |
|
dc.subject |
Approximation of fuzzy systems |
en |
dc.subject |
Chebyshev series |
en |
dc.subject |
Fuzzy control |
en |
dc.subject |
Nonlinear systems identification |
en |
dc.subject |
Process control |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
Chebyshev approximation |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Nonlinear control systems |
en |
dc.subject.other |
Polynomial approximation |
en |
dc.subject.other |
Process control |
en |
dc.subject.other |
Fuzzy controllers |
en |
dc.subject.other |
Fuzzy control |
en |
dc.title |
Truncated Chebyshev series approximation of fuzzy systems for control and nonlinear system identification |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0165-0114(01)00124-5 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0165-0114(01)00124-5 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
The lack of mathematical models that pertains fuzzy control systems imposes a serious drawback regarding some important tasks such as stability analysis and system identification. For that purpose, the availability of analytical expressions for the fuzzy systems is very important. This paper provides a systematic practical way of approximating fuzzy systems by Chebyshev polynomials, which depend on a finite number of parameters. The proposed methodology is illustrated with two examples: (a) a control problem concerning a tabular reactor which, depending on the operating conditions, may exhibit multiple steady states and (b) the problem of identifying a continuous stirred tank reactor which, at certain values of structural parameters, exhibits stable or unstable steady states or limit cycles. (C) 2002 Elsevier Science B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Fuzzy Sets and Systems |
en |
dc.identifier.doi |
10.1016/S0165-0114(01)00124-5 |
en |
dc.identifier.isi |
ISI:000173797500006 |
en |
dc.identifier.volume |
126 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
89 |
en |
dc.identifier.epage |
104 |
en |